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Abstract
Sampling methods are an indispensable tool for Bayesian inference, as they provide a

flexible and asymptotically exact approximation to the intractable posterior in an out-

of-the-box way. These methods generate or update the samples by simulating a dynami-

cal process, which is a construct on a space with certain geometry. Non-Euclidean

geometry has long been incorporated in Bayesian inference and continues to generate

impact. It is considered either (1) directly due to that the target distribution is defined

on a non-Euclidean manifold, or (2) for a proper dynamics that respects the geometry

of a distribution space. In this chapter, we review the background and some recent prog-

ress on the interplay between geometry and sampling methods. We consider two major

classes of sampling methods: Markov chain Monte Carlo (MCMC) and particle-based

variational inference (ParVI). For MCMC, we cover some dynamics on manifolds

and their simulation for both cases (1) and (2). For ParVI, we describe its geometric

interpretation under the view of case (2), and introduce the variants that the interpreta-

tion inspires, including those for case (1).

Keywords: Bayesian inference, Riemannian geometry, Markov chain Monte Carlo,

Particle-based variational inference

1 Geometry consideration in sampling: Why bother?

Bayesian inference is the central task in Bayesian modeling. Given a prior dis-

tribution p0(x) of a latent variable x and a likelihood distribution p(ojx) that
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links x to an observation/data variable o, the task is to approximate the poste-

rior distribution p(xjo) of the latent variable x given an observation value o.

By Bayes’ rule, we know that pðxjoÞ ¼ p0ðxÞpðojxÞ
pðoÞ ¼ p0ðxÞpðojxÞR

p0ðxÞpðojxÞ dx
, but the task

is still highly intractable due to the commonly high-dimensional integral.

Sampling methods are a natural fit to Bayesian inference. On one hand, the

most common expectation on a posterior approximator is to estimate an

expectation of a function under the posterior. With samples of the posterior,

this can be conveniently estimated using the average of the function values

on the samples. On the other hand, sampling methods often allow an unnorma-
lized density function of the target distribution, which is the case in Bayesian

inference: p(xjo) ∝ p0(x)p(ojx), so there is an easily accessible unnormalized

density.

Commonly the latent variable is represented as a vector in a Euclidean

space. But in many applications, the latent variable may be more appropriate

to be defined in a non-Euclidean (“curly”/“nonflat”) space, often formalized

as a manifold. This is the first case for considering non-Euclidean geometry

in sampling methods. For example, in some applications we only care about

the direction of a data vector while its magnitude does not convey useful

information. The vector is thus normalized and lies in a hypersphere

n�1 :¼fx �n|x>x¼ 1g. This includes the common “term frequency–
inverse document frequency” (tf–idf ) feature representing a document by a

weighted term (i.e., word) distribution in it, which is normalized. More

instances can be found in geology and bioinformatics, which leads to the

study of directional/orientational statistics. Modeling such data often requires

the latent variable also be in the hypersphere,a leading to the sampling task

on a hypersphere. For tf–idf feature, spherical admixture model (Reisinger

et al., 2010) confines the “topic” latent vectors also on the hypersphere. Hyper-

spherical latent vector is also used in variational autoencoder (Davidson et al.,

2018), which improves the performance for hyperspherical data and also enables

an uninformative prior that helps better clustering for the usual Euclidean data.

Lan et al. (2014) considered sampling from a general norm-constrained space by

converting the space to a hypersphere.

Another example is latent variables on a simplex Δn�1 :¼ fx � ð+Þn|Pn
i¼1x

i ¼ 1g,b which is common since it is where the probability parameter of

a categorical likelihood lives. Although the simplex is flat, people often desire

a parameterization using (n� 1) free/unconstrained parameters, which is a non-

linear representation of the space (Beck and Teboulle, 2003; Patterson and Teh,

2013). For more examples, in matrix completion (e.g., recommender system),

the matrix is often seen as being generated from a singular-value decomposition

form to handle the rank constraint (Salakhutdinov and Mnih, 2008; Song and

aThis can be promoted from the fact that hyperspheres are not homeomorphic to Euclidean spaces.
bThe superscript i here represents the contravariant index of a vector x, but not the exponent.
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Zhu, 2016; Yanush and Kropotov, 2019). Under a Bayesian treatment, this leads

to inferring latent variable on the set of orthogonal matrices (may not be in a

squared shape), called the Stiefel manifold ( James, 1976; Stiefel, 1935). Some

works on variational autoencoders (Grattarola et al., 2018; Mathieu et al.,

2019; Nagano et al., 2019; Ovinnikov, 2019) take a hyperbolic latent space for
tree-structured data, due to their similar geometry that the volume (resp. number

of nodes) grows exponentially with the distance to the origin (resp. the distance

to the root node). Some recent works also consider endowing the latent space

with the pulled-back metric from the data space so that the induced geometry

objects such as gradient, geodesic (Arvanitidis et al., 2018, 2019; Chen et al.,

2018b), exponential map (Shao et al., 2018), and isotropic Gaussian (Kalatzis

et al., 2020) in the latent space follow the data-manifold geometry, which make

operations such as interpolation in the latent space represent a semantic

meaning.

The manifold perspective is more common for Bayesian methods than one

may expect, as the concept of information geometry (Amari, 1998, 2016;

Amari and Nagaoka, 2007) introduces a “natural” metric to the latent space

(even for Euclidean latent space). Noting that each value of the latent variable

x defines a likelihood distribution p(ojx) on the observation variable o, the dif-
ference between x values may be more naturally measured by the difference

between the distributions they define (see Fig. 1). If the infinitesimal distribu-

tion difference is measured by the KL divergence, the induced latent space

metric is the Fisher–Rao metric, which is invariant to reparameterization.

The well-known natural gradient (Amari, 1998; Khan and Nielsen, 2018) is

the gradient under this metric, which is the fastest ascending direction of a

distribution objective function, and remains the same under any parameteriza-

tion of the distribution. Using natural gradient in optimization often achieves

a much faster convergence.

FIG. 1 Information geometry as an example of the second case for considering geometry in

sampling methods: to respect the geometry of a distribution space. The difference between latent

variable values x1, x2 is more appropriately measured as the difference between the likelihood dis-

tributions p(ojx1), p(ojx2) they define. Equally separated x1, x2 pairs in the latent space X may be

differently separated in the distribution space M.
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Information geometry is the first example of the second case for considering

geometry in sampling methods, i.e., to respect the geometry of a distribution

space. Such a consideration is also the underlying principle of particle-based

variational inference (ParVI) methods, which are a relatively new and fast-

developing branch of sampling methods. In contrast to conventional MCMC

methods, ParVI methods use a deterministic dynamics to iteratively update a

fixed-sized set of particles (i.e., samples) toward the target distribution, and

can often achieve a better sample efficiency. The dynamics is chosen to fastest

descending the difference between the particle distribution and the target distri-

bution under some metric, which is formally the gradient flow of the difference

function on a certain space of distributions. Studying the geometry of the dis-

tribution space as a manifold then reveals the assumptions and convergence

analysis of ParVI, and also draws the link to general MCMC dynamics. The geo-

metric understanding also inspires ParVI variants that converge faster, produce

more accurate approximations, and handles non-Euclidean latent space.

This review is organized as follows. We first introduce basic concepts of

manifold in Section 2. We then describe general MCMC dynamics in

Section 3.1, followed by MCMC instances on manifolds in Section 3.2 which

can be simulated in the coordinate space of the manifold. For some manifolds,

simulation in their embedded space is advantageous, as shown in Section 3.3.

Next, we introduce ParVI methods starting with perhaps the most popular

instance [Stein variational gradient descent (SVGD)] in Section 4.1. After intro-

ducing some background knowledge in Section 4.2, we present in Section 4.3

the geometric interpretation as the gradient flow on certain distribution spaces,

which reveals the assumptions and convergence analysis of ParVI. This interpre-

tation also draws the link to general MCMC dynamics as we show in

Section 4.4, and inspires ParVI variants that converge faster, produce more

accurate approximations, and handles non-Euclidean latent space as shown in

Section 4.5.

2 Manifold and related concepts

In this part we introduce some basic concepts pertaining to manifold. The

concept of manifold is a generalization of vector spaces, which allows a

“curly” intuition and spacial heterogeneity. The so-called Riemannian mani-

fold introduces a light structure but which then induces almost all counterparts

of common concepts in an inner-product space, which enables tractable com-

putation. We focus on the scheme and intuition of the concepts and include

relations to linear space when possible. See formal textbooks (e.g., Abraham

et al., 2012; Do Carmo, 1992; Nicolaescu, 2007; Romano, 2007) for a com-

plete introduction.

2.1 Manifold

A common intuitive description of an m-dimensional manifold M is that it is

a space that locally looks like the m-dimensional Euclidean space m . It is
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formally defined as a topological space,c any point on which has a neighbor-

hood I homeomorphic to a Euclidean open subset Ω�m, meaning that there

is a continuous bijection Φ : I !Ω whose inverse is also continuous (such Φ
is called a homeomorphism) (see Fig. 2A). By definition, around any point the

manifold can be locally represented using an m-dimensional coordinate

x̂¼ΦðxÞ �m, so ðI ,ΦÞ is called a local coordinate system, and Ω a coordi-

nate space. A function f :M! on the manifold can also be concretized as a

usual multivariate function f ∘Φ�1 :m !, which holds the same continuity

as f. This is what formalizes the intuition “locally looks like the Euclidean

space.” Note that for some manifolds there is no global coordinate system,

e.g., the hypersphere n�1 :¼fx �n|x>x¼ 1g, since it is not homeomorphic

to any Euclidean space.

The definition for now covers the continuity of the manifold, but we often

also care about differentiability and smoothness. A smooth manifold is

expected to define smooth functions on it. For a function f, its smoothness

around a point x can be characterized by that of its coordinate version

f ∘ Φ�1 : m !  . To make a consistent characterization independent of

the choice of coordinate system, under any other coordinate system ðJ , ΨÞ
containing x (Fig. 2B), the multivariate function f ∘ Ψ�1 should have the same

smoothness as f ∘ Φ�1. This requires the coordinate conversions Ψ ∘ Φ�1 and

Φ ∘ Ψ�1 be smooth as m ! m functions. Such coordinate systems are

called compatible, and the manifold M is called smooth if there is a set of

compatible coordinate systems that covers M. The differentiability/smooth-

ness of a function f or a curve γ � : ½a,b�!M on a smooth manifold can be

consistently determined by that of f ∘Φ�1 :m !m or t 7!ΦðγtÞ :!m.

FIG. 2 Illustration of the concepts of manifold and coordinate system. (A) Concept of manifold

and local coordinate system. (B) Intersecting coordinates for characterizing a smooth manifold.

cA topological space is a set with a topology, which is roughly a set of abstract open subsets

(containing ; and the entire set, closed under finite intersection and countable union), enabling

the definitions of neighborhood, limit, and continuity. Commonly for defining a manifold, the

topological space requires second-countable (the topology can be generated from a countable

set of open subsets) and second-separable (any two points have nonintersecting neighborhoods).
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Denote the set of smooth functions on M as C∞ðMÞ. Since common mani-

folds are smooth and common objects of interest are defined on smooth mani-

folds, we focus on smooth manifolds and smooth functions hereafter, and still

call them “manifold” and “function” for brevity.

2.2 Tangent vector and vector field

(See Fig. 3 for the relations among the introduced concepts in this and the

next subsection.) Fundamental geometric descriptions of the manifold and

algorithmically concerned dynamics (e.g., gradient descent and Langevin

dynamics analogies) calls for the concept of tangent vector. In m the tangent

vector at a point γ0 on a smooth curve (γt)t (Fig. 4A) is the limiting vector

v :¼ dγt
dt

���
t¼0

¼ lim h!0
1
h ðγh � γ0Þ, which holds the meaning of the velocity of

a particle moving along the curve. Unfortunately on manifolds there is no vec-

tor subtraction (yet). For another characterization, note that the curve induces

a directional derivative of a function f at γ0 as
d
dt f ðγðtÞÞ

��
t¼0

, which is, by the

chain rule, ∂i f ðγ0Þ
dγit
dt

���
t¼0

¼ viðγ0Þ∂i f ðγ0Þ, where ∂if is short for ∂

∂xi f ðx1,…, xmÞ,
and we have used Einstein’s summation convention that the index repeated in

both a subscript and a superscript (e.g., i here) is summed over automatically

FIG. 3 Relations among some concepts on a manifold M. A symbol just above a curly arrow

represents an instance of the map. See Sections 2.2 and 2.3 for details.

FIG. 4 Illustration of tangent vector, tangent space, vector field, and flow on a manifold M. See

Section 2.2 for details. (A) Tangent vector on a curve. (B) Tangent vector and tangent space on a

manifold. (C) Vector field and its flow.
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(i.e., the summation symbol “
Pm

i¼1 ” is omitted). So the tangent vector has

another appearance v ¼ vi∂i as a directional derivative operator on functions,

and its action on a function v[f] is the directional derivative of f along v.
This perspective can be extended to manifolds, since the directional deriv-

ative d
dt f ðγtÞ

��
t¼0

is still well defined (note t 7! f(γt) is a  !  function).

Using any coordinate system ðI ,ΦÞ around γ0, it can be expressed as

d
dt ð f∘Φ

�1ÞðΦðγtÞÞ
��
t¼0

¼ vi∂i f in the sense that vi :¼ d
dtΦ

iðγtÞ
��
t¼0

and ∂i f :¼

∂

∂x̂i
f ðΦ�1ðx̂ÞÞ

���
x̂¼Φðγ0Þ

(Fig. 4A). Covering all possible smooth curves passing

through x, a general tangent vector v at x � M as a directional derivative

operator, is defined as a linear function on C∞ðMÞd satisfying the Leibniz

rule: v[fh] ¼ f(x)v[h] + h(x)v[f]. All tangent vectors at x form an m-dimensional

linear space called the tangent space TxM at x (Fig. 4B), and under any

coordinate system containing x, f∂igmi¼1 is a basis, which is defined as

∂i f :¼ ∂

∂x̂i
f ðΦ�1ðx̂ÞÞ

���
x̂¼ΦðxÞ

. Any v � TxM can be expressed as v ¼ vi∂i where

vi ¼ v[Φi].e Under the change of coordinate system, the basis transforms as

~∂α ¼ ∂x̂i

∂ŷα ∂i , where
~∂α f :¼ ∂

∂ŷα f ðΨ
�1ðŷÞÞ

���
ŷ¼ΨðxÞ

forms the basis under the new

coordinate system ðJ ,ΨÞ, and ∂x̂i

∂ŷα :¼ ∂

∂ŷαΦ
i∘Ψ�1ðŷÞ

���
ŷ¼ΨðxÞ

. For a given tangent

vector v, its coordinate transforms similarly: ~vα ¼ ∂ŷα

∂x̂i
vi. Note that the coordinate

expression v¼ vi∂i ¼ ~vα~∂α is invariant under coordinate change.

If M is a linear space, then it is isomorphic to the tangent space TxM
for any x � M : y �M 7! vy � TxM,vy½ f � :¼

d

dt
f ðx+ tyÞ

���
t¼0

. But generally

tangent spaces at different points are different linear spaces.

A vector field V (Fig. 4C) defines a tangent vector V (x) at every point x on
the manifold, and V (x) depends on x smoothly (e.g., Vi ∘ Φ�1 for each i is
smooth in any coordinate system). Denote the set of vector fields on M as

T ðMÞ. A vector field defines a dynamics (dynamical system) on the mani-

fold: dxt
dt ¼ VðxtÞ, which describes how a particle moves on the manifold as

time proceeds. Its solution is called a flow, which is a set of curves

fðϕtðxÞÞt|x � Mg such that ϕ0(x) ¼ x and d
dtϕtðxÞ

��
t¼0

¼ VðxÞ. The flow of

any vector field V exists at least locally (due to Picard–Lindel€of theorem).

For a concise and conventional notation, in the following, symbols with

indices (e.g., xi, vi) represent the coordinates of the same objects (e.g., x, v)
in some coordinate system. Particularly we use xi to represent the same thing

as x̂i, i.e., the coordinates of a manifold point x.

dMore precisely, instead of C∞ðMÞ, it is sufficient to only consider functions that are smooth in a

neighborhood of x.
eThis can be seen through v½Φj� ¼ vi∂iΦj ¼ vi ∂

∂x̂ iΦ
jðΦ�1ðx̂1,…, x̂mÞÞ

��
x̂¼ΦðxÞ ¼ vi

∂x̂ j

∂x̂ i

����
x̂¼ΦðxÞ

¼ viδji ¼ vj.
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2.3 Cotangent vector and differential form

The cotangent space T�
xM at x is the dual space of the tangent space TxM.

Under a coordinate system, the basis f∂igmi¼1 of TxM induces a dual basis

f∂*ig
m

i¼1 for T
�
xM: ∂*

i
[v] :¼ vi ¼ v[Φi], which satisfies ∂*

i½∂j� ¼ δij.
f Under this

perspective, the directional derivative along vector v, v[f] ¼ vi∂if ¼ (∂i f∂
*i )

[vj∂j] can be viewed as the action of the covector ∂if∂
*i on the vector v.

We define this covector as the differential of f: d f � T�
xM, d f ½v� :¼

v½ f �,8v � TxM . We then recognize that dΦi½∂j� ¼ ∂j½Φi� ¼ ∂

∂x̂j
ΦiðΦ�1ðx̂ÞÞ¼

∂x̂i

∂x̂j
¼ δij, so ∂

*i is essentially dΦi. Conventionally dΦi is denoted using the sym-

bol of the corresponding coordinates as dxi. The covector is then expressed as

df ¼ ∂if dx
i, which is the form of the usual differential in calculus.

To describe a k-dimensional volume element on a manifold and more, we

need the concept of k-form. To draw the intuition, consider the volume of

the k-dimensional parallelepiped formed by k vectors. We know that the

volume responds linearly to each vector, and switching two vectors alters

the orientation of the parallelepiped, so the volume changes its sign. This tells

us that the volume is an antisymmetric linear function on the k vectors.

Indeed, in k , the volume formed by k vectors is the k � k determinant of

the vector-stacking matrix, which is an antisymmetric linear function.

On a manifold, a k-dimensional infinitesimal volume element at a point x
is formed by k tangent vectors from TxM. We call the map from the k vectors
to the volume value as a k-differential form, or just k-form. Formally, a k-form

μ : ðTxMÞk !  is an antisymmetric k-multilinear function on TxM. Denote

the space of k-forms as ^kT�
xM, which is a subspace of ðT�

xMÞk :¼ � kT�
xM,

i.e. the space of k-multilinear functions. In this sense, a covector from T�
xM is

also recognized as a 1-form. Due to antisymmetry, if there are two identical

vectors in the k input vectors, the k-form outputs zero. Due to linearity, this

case can be extended to k linearly dependent vectors. Since when k > m,
any k vectors are linearly dependent, and we know that all k-forms are

trivially zero for k > m. In other cases, due to antisymmetry, ^kT�
xM is

m
k

� �
-dimensional.

To construct a k-form using k covectors frð1Þ,…, rðkÞg from T�
xM (i.e.,

using k 1-forms), we introduce the wedge product, which is essentially the

antisymmetrized tensor product: rð1Þ ^⋯^ rðkÞ :¼
P

σð�1Þσrðσ1Þ �⋯� rðσkÞ,
where σ traverses over all the permutations of f1,…, kg and (�1)σ is its sign.g

fThe symbol δij is the Kronecker delta tensor, i.e., δ
i
j :¼ 1 if i ¼ j and δij :¼ 0 otherwise. Similarly,

δij, δ
ij are defined for the corresponding types of tensors.

gThe notation as the product of a binary operator ^ (instead of an operator on k covectors alto-

gether) is valid since ðrð1Þ ^⋯^ rðiÞÞ^ðrði+ 1Þ ^⋯^ rðkÞÞ ¼ rð1Þ ^⋯^ rðkÞ for any 1 	 i < k.
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Using this notion, the m
k

� �
k-forms fdxi1 ^⋯^dxikg1	i1<⋯<ik	m build a basis

of ^kT�
xM. As a tensor in ðT�

xMÞk, any k-form can be expanded as μ¼
μi1…ik dx

i1 �⋯� dxik , where μi1…ik ¼ μ½∂i1 ,…, ∂ik �. Due to antisymmetry, per-

mutationally equivalent index tuples can be grouped together:

μ¼
P

1	i1<⋯<ik	m

P
σμiσ1…iσk

dxiσ1�⋯� dxiσk ¼
P

1	i1<⋯<ik	m μi1⋯ik

P
σð�1Þσ

dxiσ1 �⋯� dxiσk ¼
P

1	i1<⋯<ik	m μi1⋯ikdx
i1^⋯^dxik ¼ 1

k!μi1…ik dx
i1^⋯^dxik .

The differential operator d can be extended as exterior derivative to act on

a k-form and give a (k + 1)-form: dμ :¼
P

1	i1<⋯<ik	mdμi1…ik ^ dxi1 ^⋯ ^
dxik ¼ 1

k! ∂iμi1…ik dx
i ^ dxi1 ^⋯ ^ dxik . This definition is independent of the

choice of coordinate system; particularly it has an alternative definition: df is
the differential of function for a 0-form f (i.e., a function), and d(μ ^ ν) ¼
dμ ^ ν + (�1)kμ ^ dν for k-form μ, and d ∘ d ¼ 0.

2.4 Riemannian manifold

A Riemannian manifold is a manifold M in any of whose tangent space TxM
there is an inner product h � , � iTxM defined, and that it depends on x

smoothly. This h � , � iTxM is called a Riemannian structure or metric. In any

coordinate system it can be expressed as a positive definite matrix,

hu,viTxM ¼ gijðxÞuivi where gijðxÞ :¼ h∂i,∂jiTxM. It also induces a norm in each

tangent space, kvkTxM :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hv,viTxM

q
. This simple structure endows the

manifold with many useful concepts that make computation possible.

The gradient of a function f � C∞ðMÞ at x � M is defined as the tangent

vector grad f ðxÞ � TxM that satisfies hgrad f ðxÞ,viTxM ¼ d f ½v� ¼ v½ f �,
8v � TxM. It has the following coordinate expression:

grad f ðxÞ ¼ gijðxÞ∂j f ðxÞ∂i ¼ GðxÞ�1rf ðxÞ, (1)

where (gij)¼ G�1 is the inverse matrix of the Riemann metric tensor G :¼ (gij).
The gradient can be defined all over the manifold, and the flow of the nega-

tive of this vector field is called a gradient flow. This abstract definition of

gradient meets the common intuition of a fastest ascending direction for

f: max � argmaxv�TxM:kvk¼1v½ f �¼ max � argmaxv�TxM:kvk¼1hgrad f ðxÞ,viTxM ¼
grad f ðxÞ, where “max � argmax” denotes the scalar product of the maximum

to the maximizing vector.

The length of a curve γ : ½a,b� ! M can be defined using the Riemannian

structure as: LðγÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR b
a kdγt=dtk

2
TγtM

dt
q

, which leads to the distance

between two points on the manifold:

dMðx,yÞ :¼ inf
ðγtÞt�½0,1�:γ0¼x,γ1¼y

LðγÞ: (2)

If the manifold is complete under this distance, the distance-minimizing curve

exists [Hopf–Rinow theorem (Hopf and Rinow, 1931)], which is called a
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geodesic. It is the counterpart of straight line in Euclidean spaces. As illu-

strated in Fig. 5A, in analogy to vector addition x + v in linear space that

moves a point x along the straight line in the direction of v, define the expo-
nential map Expx : TxM ! M,v 7! γ1 as moving a point x along the geode-

sic (γt)t�[0, 1] tangent to v at x : γ0 ¼ x, dγt
dt

���
t¼0

¼ v, which exists uniquely. As

mentioned in Section 2.2, tangent space of a linear space is everywhere the

same, but is not for a general manifold. Fortunately the Riemannian structure

induces a link between tangent spaces at different points, which is the parallel
transport Γy

x : TxM ! TyM (Fig. 5B). It transports a tangent vector at x to a

tangent vector at y along the geodesich (γt)t�[0,1] from x to y in a certain way

that is regarded “parallel”; particularly
dγt
dt , vt

D E
TγtM

does not change with t,

where v0 ¼ v, v1 ¼ Γy
xðvÞ.

i

2.5 Measure

A measure on an m-dimensional manifoldj is represented by an m-form ω,
which measures an m-dimensional infinitesimal volume element everywhere

on the manifold. Since the space of m-forms is one-dimensional, ω is repre-

sented by ω1…m dx1 ^⋯ ^ dxm, or simply ω dx, where dx :¼ dx1 ^⋯ ^ dxm

represents the usual Lebesgue measure of the Euclidean coordinate space.

As a measure, ω1…m is required to be a nonnegative function. Such an m-form
is also called a volume form. Under coordinate system change, the coordinate

FIG. 5 Illustration of concepts on a Riemannian manifold, with analogy to a linear space. See

Section 2.4 for more details. (A) Vector addition in linear space (left) and exponential map on

Riemannian manifold (right). (B) Parallel transport in linear space (left) and on Riemannian man-

ifold (right).

hA noteworthy distinction from the linear case is that transporting the vector in the parallel way

but along different paths would generally yield different results, and the difference is related to

the curvature of the manifold. If there is no difference, the manifold is seen as flat (though unnec-

essarily linear).
iWe would like to mention that the general definitions of geodesic, exponential map and parallel

transport are built on an independent manifold structure called affine connection, and the defini-

tions here correspond to the special version under the Levi-Civita connection, which is an affine

connection induced from the Riemannian structure.
jTo define a measure, the manifold is required to be orientable: there exists a set of coordinate

systems covering the manifold and in the intersection of any two coordinate systems, the Jacobian

determinant of the coordinate transformation ∂ŷα

∂x̂i

� ���� ��� is positive.
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expression transforms with the Jacobian determinant of the coordinate trans-

formation: ~ωðyÞ ¼ ωðxÞ= ∂ŷα

∂x̂i

� ���� ���.
On a Riemannian manifold, there is a special measure called the Rieman-

nian measure, which has the coordinate expression ωg ¼
ffiffiffiffiffiffiffi
jGj

p
dx, where jGj

is the determinant of G. This expression is coordinate invariant, meaning that

in another coordinate system, it becomes ~ωg ¼
ffiffiffiffiffiffiffi
j ~Gj

q
dy.

Integral on the manifold can be defined under a measure. Particularly the

density function of a distribution/measure η on the manifold can be defined:

for any measurable subset I � M, ηðIÞ ¼
R
ΦðIÞpL dx ¼

R
ΦðIÞpR dωg , where

pL is the density w.r.t. the Lebesgue measure dx in the coordinate space, and

pR is the density function w.r.t. the Riemannian measureωg. They are related by:

pL ¼ pR
ffiffiffiffiffiffiffi
jGj

p
:

Finally we mention the well-known Stokes theorem: for a proper manifold

region I with boundary ∂I , and an (m � 1)-form η, we have
R
Idη ¼

R
∂Iη.

2.6 Divergence and Laplacian

In Euclidean space, the divergence of a vector field V is defined as (r� V )(x)
:¼ ∂iV

i(x). It is considered in a type of integral with compactly supported

function f:
R
mV � rf dx¼

R
mVið∂if Þ dx¼�

R
m f ∂iV

i dx¼�
R
m fr �V dx,

where the second equality is due to integration by parts and that the termR
m∂iðf ViÞ dx¼

R
∂m f Vi dSi (due to Stokes theorem; ( dSi)i is the infinitesimal

surface element with out-pointing normal direction on the infinitely large

sphere ∂m, such that ddS ¼ dx) vanishes since f ¼ 0 on ∂m. On a Rieman-

nian manifold, the concept of divergence can be extended similarly under this

characterization. For a coordinate-invariant definition, integrals are consid-

ered under the Riemannian measure:

div : T ðMÞ!C∞ðMÞ, s:t:

Z
M
V½ f � dωg ¼�

Z
M
fdivV dωg, 8f �C∞

c ðMÞ,

(3)

where C∞
c ðMÞ denotes the set of all compactly supported functions on

manifold M. Note by the definition of gradient, the l.h.s. can also be

written as
R
hgrad f ðxÞ,VðxÞiTxM dωgðxÞ. In any coordinate space, the l.h.s.

is
R
Vjð∂j f Þ

ffiffiffiffiffiffiffi
jGj

p
dx¼�

R
f ∂jðVj

ffiffiffiffiffiffiffi
jGj

p
Þ dx, which equals to the r.h.s

�
R
fdivV

ffiffiffiffiffiffiffi
jGj

p
dx by the definition. This then leads to the coordinate

expression of the divergence:

div V ¼ ∂ið
ffiffiffiffiffiffiffi
jGj

p
ViÞ=

ffiffiffiffiffiffiffi
jGj

p
¼ ∂iV

i + Vi
∂i log

ffiffiffiffiffiffiffi
jGj

p
:
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In Euclidean space, the Laplacian of a function r2f :¼
Pm

i¼1∂i∂if ¼
r � rf can be seen as the divergence of the gradient of f. This can be

extended to Riemannian manifold:

Lap f :¼ divðgrad f Þ ¼ ∂ið
ffiffiffiffiffiffiffi
jGj

p
gij∂jf Þ=

ffiffiffiffiffiffiffi
jGj

p
:

2.7 Manifold embedding

Many manifolds are defined as a subset of a Euclidean space n , e.g., the

hypersphere n�1 :¼ fx � n|x>x ¼ 1g. This is often how we imagine or pic-

ture a manifold (even in our illustrative figures), but is it possible for any

manifold defined in the abstract way described in Section 2.1? This is for-

mally described as the embedding of a manifold M, which is a smooth injec-

tion Ξ : M ! n to a Euclidean space so that we can understand the

manifold as a subset ΞðMÞ of n (Fig. 6). Whitney embedding theorem

(Persson, 2014; Whitney, 1944) shows that an m-dimensional manifold can

always be embedded into 2m.

For a Riemannian manifold, the embedding also pulls back the Euclidean

metric δαβ to the manifold as ~gij ¼ δαβ
∂ŷα

∂x̂i
∂ŷβ

∂x̂j
for ŷ ¼ ΞðΦ�1ðx̂ÞÞ. If it coincides

with the original metric gij, the embedding is said isometric. Nash embedding

theorem (Nash, 1956) shows that any Riemannian manifold can be isometri-

cally embedded into a Euclidean space.

In the embedded space n, the restriction of the n-dimensional Lebesgue

measure onto the subset ΞðMÞ � n induces a measure on ΞðMÞ, which is

called the Hausdorff measure. A distribution on manifold then also admits a

density function pH : ΞðMÞ ! 
0 w.r.t. this measure. If the manifold is

Riemannian and the embedding is isometric, then the Hausdorff measure

coincides with the Riemannian measure, and pR coincides with pH in the sense

that pR ¼ pH ∘Ξ∘Φ�1.

FIG. 6 Illustration of the embedding of a manifold.
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3 Markov chain Monte Carlo on Riemannian manifolds

Markov chain Monte Carlo (MCMC) methods have long been a workhorse for

Bayesian inference. When for inferring latent variables on a manifold, classi-

cal MCMC methods such as Gibbs sampling and Metropolis–Hastings (MH)

can be adapted in some cases. For example, for sampling from a hypersphere

n�1 using MH, one can draw a proposal from an isotropic Gaussian centered

at the current sample and project (normalize) the sample onto n�1, then com-

pute the acceptance rate using the (unnormalized) target distribution density

(the proposal density ratio is 1 since the Gaussian is isotropic thus symmetric

after projection) (Reisinger et al., 2010). But for a general manifold there does

not seem to be a systematic way to construct such variants. More importantly,

same as in the usual Euclidean case, these classical methods are not suffi-

ciently efficient as their Markov chains mix slowly due to the uninformative

and local transition.

Dynamics-based MCMC methods are more efficient and lead to the recent

trend. They carry out the sampling process by simulating a dynamics, or for-

mally a diffusion process or a continuous-time no-jump Markov process [see

e.g., S€arkk€a and Solin (2019) for a comprehensive introduction]. The dynam-

ics typically leverages the gradient of the target distribution log-density so the

move is more informative and leads to distant transition. This lowers autocor-

relation and increases the effective sample size and sampling efficiency.

Many dynamics show nice convergence properties (Eberle et al., 2019;

Mangoubi and Smith, 2017; Roberts et al., 1996; Seiler et al., 2014), which

gift an exponential convergence guarantee to many algorithms under proper

conditions (Cheng and Bartlett, 2017; Cheng et al., 2018; Dalalyan, 2017;

Durmus and Moulines, 2016; Durmus et al., 2017; Livingstone et al., 2019;

Roberts et al., 1996; Seiler et al., 2014). Particularly for Bayesian inference,

the gradient formulation also allows using stochastic gradient in the simulation

of many dynamics (Chen et al., 2014; Welling and Teh, 2011) to scale to large

datasets. Given a set of independently and identically distributed (IID) data

points foðiÞgNi¼1, the stochastic gradient estimates the gradient of the posterior

log-density rx log pðxjfoðiÞg
N

i¼1Þ ¼ rx log p0ðxÞ +
PN

i¼1 log pðoðiÞjxÞ using a

uniformly randomly chosen sub-dataset S (resampled for each call to the

gradient) of a fixed size jSj as:

ðStochastic gradientÞ rx logp0ðxÞ +
N

jSj
X
o� S

logpðojxÞ: (4)

It is a stochastic but unbiased and cheap estimate of the true gradient so that

the method is scalable to large datasets. Moreover, dynamics are constructed

using geometric objects, so can be naturally extended to Riemannian mani-

folds. We thus focus on dynamics-based MCMC methods in the following.
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3.1 Technical description of general MCMC dynamics

In the Euclidean case, a dynamics is described by the so-called stochastic dif-

ferential equation (SDE):

ðDynamicsÞ dx ¼ VtðxÞ dt +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DtðxÞ

p
dBtðxÞ, (5)

where Vt(x) is a vector or velocity field (may be time dependent) describing

the deterministic drift of particles, Dt(x) is a symmetric positive semidefinite

matrix called the diffusion matrix (also may be time dependent) describing

the strength of the stochastic diffusion, and Bt(x) is the standard Brownian

motion (or called the Wiener process), which can be seen as adding a sample

of infinitesimal scale from the normal distribution Nðx,dtÞ independently

ateach time instance t for advancing an infinitesimal time period dt. The

square root
ffiffiffiffiffiffiffiffi
2Dt

p
represents the positive semidefinite matrix such thatffiffiffiffiffiffiffiffi

2Dt

p ffiffiffiffiffiffiffiffi
2Dt

p > ¼ 2Dt. A dynamics induces the evolution of the distribution of

particles moving under the dynamics (see Fig. 7). Denoting the evolving dis-

tribution as (qt)t in terms of the density function w.r.t. the Lebesgue measure,

the evolution rule is explicitly given by the Fokker–Planck equation (FPE):

ðFPEÞ ∂tqt ¼ �r � ðqtVtÞ + rr> : ðqtDtÞ, (6)

where rr> : ðqtDtÞ :¼ ∂i∂jðqtD
ij
t Þ ¼ trðrr>ðqtD>

t ÞÞ is the double-dot prod-

uct of two matrices of the same size (see e.g., Villani (2008, pp. 27–30), for
the time-dependent, weak derivative, and Riemannian manifold extension).

The FPE plays a central role in developing proper dynamics for MCMC.

Particularly, the target distribution p needs to be a stationary distribution

of the dynamics, which leads to the requirement on the dynamics that

0 ¼ �r� (pVt) + rr> : (pDt). Based on this, Ma et al. (2015) developed a

FIG. 7 Illustration of the evolving distribution induced by a dynamics equation (5). Given par-

ticles fxðiÞt gi at time t that distribute obeying distribution qt, if they move according to the dynam-

ics equation (5), then after a short period of time ε their positions undergo a displacement (shown

as the red arrow) and their new positions fxðiÞt+εgi distribute obeying a new distribution qt+ε. When

ε approaches to zero, the distribution qt evolves continuously in time. The rule of the evolution is

given by the Fokker–Planck equation (6).
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complete recipe for all the dynamics that has p as a stationary distribution

(and with time-independent V and D)k:

ðp-stationary dynamicsÞ dx ¼ VpðxÞ dt +
ffiffiffiffiffiffiffiffiffiffiffiffi
2DðxÞ

p
dBtðxÞ, (7)

where VpðxÞ :¼ r � pðxÞDðxÞ + pðxÞQðxÞð Þ=pðxÞ
which means Vi

pðxÞ :¼ ∂j pðxÞDijðxÞ + pðxÞQijðxÞ
� �

=pðxÞ, (8)

and Q(x) is any antisymmetric matrix (Q> ¼ �Q) called a curl matrix. When

D is positive (strictly) definite (i.e., it is nonsingular), p is the only stationary

distribution of this dynamics. By the FPE (6), the dynamics equation (7)

is equivalent to the following deterministic dynamics (Liu et al., 2019b,

Lem. 1, Thm. 5) in the sense of the induced evolving distribution:

dx
dt

¼ DðxÞr log ðpðxÞ=qtðxÞÞ + QðxÞr log pðxÞ + r � QðxÞ, (9)

or;
dx
dt

¼ DðxÞr log ðpðxÞ=qtðxÞÞ + QðxÞr log ðpðxÞ=qtðxÞÞ, (10)

where qt is the distribution of xt. This formulation will be explored in

Section 4.4 for a geometric interpretation of a general MCMC dynamics.

The deterministic equivalent of a diffusion process is also leveraged in

diffusion-based generative models (Song et al., 2021) (“probability flow”).

In early versions, dynamics simulation is followed by an MH step to cor-

rect discretization error. But in many cases the MH step is intractable or

costly, so it is omitted when using small enough discretization.

3.2 Riemannian MCMC in coordinate space

By definition (Section 2.1), a manifold can naturally be described in each

coordinate space, and we can then carry out Euclidean space operations there.

This is particularly convenient for manifolds that has a global coordinate

system.

3.2.1 Langevin dynamics

Perhaps the first dynamics-based MCMC method that got extended is the

Langevin dynamics (Langevin, 1908; Roberts et al., 1996). Its plain form in

the Euclidean space m is described by the SDE:

ðLDÞ dx ¼ r log pL dt +
ffiffiffi
2

p
dBt, (11)

kThe “matrix-divergence” operation ∂jM
ij may be better denoted as (r � M>)>. Here we just use

r � M for a concise notation.
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where pL is the density of the target distribution in the usual sense, i.e., w.r.t.

the Lebesgue measure in m (see Section 2.5). Its manifold extension is then

developed following the same form:

ðRLDÞ dx ¼ grad log pR dt +
ffiffiffi
2

p
d~Bt (12)

¼G�1r log pR dt+r�
ffiffiffiffiffiffiffi
jGj

p
G�1

� �
=

ffiffiffiffiffiffiffi
jGj

p
dt+

ffiffiffiffiffiffiffiffiffiffiffi
2G�1

p
dBt (13)

¼G�1r logpL dt+r�G�1 dt+
ffiffiffiffiffiffiffiffiffiffiffi
2G�1

p
dBt: (14)

Here, ~Bt is the standard Brownian motion on the Riemannian manifold. This

extension can be developed from their effects in evolving distribution.

In the Euclidean space the standard Brownian motion (V ≡ 0, D ≡ 1
2
Im in

Eq. 5) leads to the diffusion equation or heat equation ∂tqt ¼ 1
2
r2qt by the

FPE (6), so on the Riemannian manifold the standard Brownian motion

should lead to the distribution evolution ∂tqt ¼ 1
2
Lap qt (see Section 2.6).

This relates the manifold motion to the Euclidean motion in the coordinate

space, which leads to its coordinate expression (Kent, 1978) and subsequently

Eq. (13).

Algorithmic developments are then pursued. Roberts and Stramer (2002)

developed sampling algorithms using the expression (14). Following the com-

mon practice of plain Langevin dynamics, the Euler–Maruyama integrator is

used due to its simplicity:

xk+1 ¼ xk + εG�1ðxkÞr log pLðxkÞ + εr � G�1ðxkÞ + Nð0, 2G�1ðxkÞεÞ, (15)

where “ + Nð0, 2G�1ðxkÞεÞ” means adding a random sample from the speci-

fied normal distribution for this step of update. As the counterpart of the Euler

integrator for ordinary differential equations, the Euler–Maruyama integrator is

also of first order, i.e., the discretization error is proportional to the step size ε.
An MH step is also called after each update to correct discretization error.

This is possible since the density function of the proposal distribution by

Eq. (15) can be computed. Compared to random-walk MH samplers, using

Langevin dynamics makes more effective move as there is a driving force

toward the nearby high-probability region (while the Brownian motion

keeps the samples a reasonable dispersion and helps exploring all the

high-probability regions). Moreover, if discretization error can be omitted,

then the MH acceptance ratio is 1. The work also includes a convergence

analysis on the simulation. Girolami and Calderhead (2011) applied the

algorithm to Bayesian inference under the information geometry perspec-

tive, i.e., using the Fisher information matrix as the Riemann metric tensor:

GðxÞ :¼pðojxÞ½rx logpðojxÞr>
x logpðojxÞ�. Improved convergence rate is

shown empirically over several Bayesian models including Bayesian logistic

regression. The same spirit is applied to Bayesian neural networks (Li et al.,

2016), where a different metric is designed based on adaptive-gradient
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optimization methods, as computing the Fisher information matrix is unaf-

fordably costly in this case. Patterson and Teh (2013) made the extension

to using stochastic gradient and applied to the inference task of latent

Dirichlet allocation (LDA) (Blei et al., 2003) on large datasets. In the task

the latent variable lies on simplexes, which is represented by nonlinear

coordinate systems.

A literature remark is that the dynamics formulated in Roberts and Stramer

(2002) and in Girolami and Calderhead (2011) and Patterson and Teh (2013)

turn out to bel :

dx ¼ G�1r log pL dt + 2r � G�1 dt +
ffiffiffiffiffiffiffiffiffiffiffi
2G�1

p
dBt, and (16)

dx ¼ G�1r log pL dt + 2r �
ffiffiffiffiffiffiffi
jGj

p
G�1

� �
=

ffiffiffiffiffiffiffi
jGj

p
dt +

ffiffiffiffiffiffiffiffiffiffiffi
2G�1

p
dBt, (17)

respectively. The respective differences from Eqs. (14) and (13) are pointed out

by Xifara et al. (2014) and are seen as a transcription error. However, Xifara

et al. (2014) also showed that Eq. (17) recovers the correct dynamics by noting:

M�1r log jMj + r � M�1 ¼ 0, if Mij ¼ Mji, and ∂kMij ¼ ∂iMkj, (18)

which is satisfied if G is defined as the Hessian of a convex function (e.g., in

mirror descent).

3.2.2 Hamiltonian dynamics

The Hamiltonian dynamics is a reformulation of Newton’s law in classical

mechanics. It describes the state of a system with the position x and also

the momentum r. The augmented (x, r) space is called phase space. A nice

property is that, for a target distribution p(x) on the positional space, and

any constant symmetric positive definite matrix Σ, the dynamics under the

potential energy � log pðxÞ,

ðHMCÞ dx ¼ Σ�1r dt, dr ¼ r log pðxÞ dt, (19)

keeps the phase-space distribution pðxÞN ðrj0,ΣÞ stationary. This can be seen

from the FPE (6) when taking x as (x, r) on the phase space. A physical under-

standing can be seen by noting that the log-density of the distribution is the

energy of the state (x, r) (hence Σ holds the physical meaning of a mass matrix),

which the dynamics conserves. Moreover the dynamics is so-called volume

preserving (Liouville theorem), i.e., the Jacobian determinant of an infinitesi-

mal transformation by the dynamics (ratio of the infinitesimal volume change)

is 1, so the distribution is kept stationary. By this property, Duane et al. (1987)

proposed an MCMC algorithm called hybrid Monte Carlo, which is subse-

quently called Hamiltonian Monte Carlo (HMC) as the common name.

lWe use a half time scale here: Eqs. (16) and (17) are the results after replacing t with 2t in the

formulations in the references.
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However, the simulation trajectory only covers a subset of the positional

space (particularly, due to energy conservation, the trajectory cannot go beyond

regions with higher potential energy than the total energy). So for drawing each

sample/proposal, the momentum variable r is resampled fromNðrj0,ΣÞ. More-

over, as the volume-preserving property is a key ingredient to keep the target

stationary, the simulation method (integrator) is also expected so, and to make

this property well defined, the integrator is also required invertible (the

continuous-time dynamics is naturally invertible). Otherwise, the volume

change would accumulate for long simulations and strongly deviate the station-

ary distribution, and the MH acceptance probability drops, making ineffective

move. Due to this consideration, the St€ormer–Verlet or called the leapfrog inte-
grator is used, which updates x and r separately on an interleaving time-

discretization scheme and is both invertible and volume preserving. In all, for

drawing a sample using L inner simulation steps, the process of HMC is:

xðk,0Þ :¼ xðk�1Þ,rðk,0Þ �N ð0,ΣÞ,rðk,
1
2
Þ :¼ rðk,0Þ +

ε

2
r logpðxðk,0ÞÞ;

xðk:lÞ :¼ xðk, l�1Þ + εΣ�1rðk, l�
1
2
Þ,rðk, l+

1
2
Þ :¼ rðk, l�

1
2
Þ + εr logpðxðk, lÞÞ,

l¼ 1,…,L; xðkÞ :¼ xðk,LÞ:

(20)

Although the leapfrog integrator does not require second-order quantities

(e.g., Hessian), it is a second-order method. An MH step is appended (where

the ratio of proposal transition is 1 due to volume preservation). When L ¼ 1,

HMC recovers the Langevin dynamics (with ε
2
as the step size), so HMC walks

much farther, making a distant thus less correlated proposal still with a high

MH acceptance rate. See e.g., Neal (2011) and Betancourt (2017) for more

detailed descriptions. The leapfrog integrator can be seen to split the dynam-

ics equation (19) into dx ¼ Σ�1r dt, dr ¼ 0 and dx ¼ 0, dr ¼ r log pðxÞ dt,
and alternately simulate each symmetrically, in closed form. This pattern

can be generalized to allow multiple splitting and simulating SDE (Chen

et al., 2015; Hairer et al., 2006), which is called symmetric splitting integrator

(SSI). The discretization error is of a higher order in ε than the Euler–
Maruyama integrator. Interestingly, the interleaving structure for invertibility

is of the same pattern as the coupling layer in flow-based generative models

(Dinh et al., 2017; Kingma and Dhariwal, 2018), and some other works more

directly use the Hamiltonian dynamics for generative modeling (Caterini

et al., 2018; Dockhorn et al., 2021; Toth et al., 2020).

Riemannian HMC is developed also by Girolami and Calderhead (2011).

Hamiltonian dynamics on a Riemannian manifold is given by the coordinate

expression

ðRHMCÞ dx ¼ GðxÞ�1r dt, dr ¼ r log pRðxÞ dt�
1

2
rx r>GðxÞ�1r

� �
dt:

(21)

256 Handbook of Statistics



The algorithm redraws momentum from r�Nðrj0,GðxÞÞ, and a generalized

leapfrog integrator is used in simulation. Invertibility and volume preservation

are again guaranteed, but each update step requires solving two equations,

which is done by fixed point iteration. To bypass this costly inner iteration,

Lan et al. (2015) reformulated the dynamics using velocity instead of

momentum, i.e., in the form of Lagrangian dynamics. The new form avoids

one equation, and the rest equation can also be eliminated by an approxima-

tion which slightly violates volume-preservation. Lee and Vempala (2018)

developed nonasymptotic convergence rate of Riemannian HMC and applied

to sampling on polytopes.

3.2.3 Stochastic gradient Hamiltonian dynamics

Assuming large IID data, the stochastic gradient equation (4) can be seen as

the true gradient corrupted by a Gaussian noise with zero mean and some

covariance matrix A(x), due to the central limit theorem. Directly using sto-

chastic gradient in Langevin dynamics equation (11) simulation (Welling

and Teh, 2011) does not introduce much problem. The change in its dis-

cretization xk+1 ¼ xk + εr log pLðxkÞ + Nð0, 2εÞ is to add a noise obeying

Nð0, AðxkÞε2Þ to the r.h.s. The variance of this new noise is a higher-order

infinitesimal of that of the originally included noise (Chen et al., 2015).

But it is not the case for HMC which is found fragile to gradient noise

(Betancourt, 2015; Chen et al., 2014), since the original dynamics is determin-

istic. In another way, the dynamics preserves energy so the energy from the

gradient noise gets accumulated all the way, driving the distribution toward

uniformity (Chen et al., 2014). To counteract the noise, Chen et al. (2014)

introduced a friction term into the dynamics that dissipates the accumulated

energy. The resulting stochastic-gradient HMC (SGHMC) dynamics is

known as the second-order (underdamped) Langevin dynamics (Wang and

Uhlenbeck, 1945) in physicsm:

ðSGHMCÞ dx ¼ Σ�1r dt, dr ¼ r log pðxÞ dt� Cr dt +
ffiffiffiffiffiffiffiffiffi
2CΣ

p
dBtðrÞ,

(22)

where C is a constant positive definite matrix controlling the friction inten-

sity, and the Brownian motion dominates over the gradient noise as is in the

Langevin dynamics case. To adaptively adjust C to match the gradient

noise, Ding et al. (2014) proposed stochastic gradient Nos�e–Hoover thermo-

stats (SGNHT) which introduces a thermostat variable ξ �  and composes

the dynamics asn:

mCompared to Eq. (13) in Chen et al. (2014), we replace its M with Σ and its C with CΣ.
nCompared to Eqs. (5,6) in Ding et al. (2014), we allow a variance in the momentum distribution

Nðrj0,ΣÞ and take the diffusion factor A as CΣ.
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ðSGNHTÞ dx ¼ Σ�1r dt, dr ¼ r log pðxÞ dt� ξr dt +
ffiffiffiffiffiffiffiffiffi
2CΣ

p
dBtðrÞ,

dξ ¼ 1

m
r>Σ�1r � 1

� �
dt: (23)

Their extensions to Riemannian manifolds are also developed. Ma et al.

(2015) designed the following SGRHMC dynamics using the complete recipe

(Eq. 8) to extend SGHMC:

ðSGRHMCÞ dx¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðxÞ�1

q
r dt,

dr¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðxÞ�1

q
r logpLðxÞ dt+r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðxÞ�1

q
dt�GðxÞ�1r dt +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GðxÞ�1

q
dBtðrÞ:

Although it converges correctly, it does not seem to have a physical or geo-

metric interpretation. Particularly, it is unknown if the dynamics can be

simulated in an embedded space of the manifold, which is required in many

applications as will be discussed next. To tackle this problem, Liu et al.

(2016a) developed the following dynamics:

ðSGGMCÞ

dx¼GðxÞ�1r dt,

dr¼rx logpRðxÞ dt�
1

2
rx r>GðxÞ�1r

� �
dt� JðxÞ>CJðxÞGðxÞ�1r dt

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2JðxÞ>CJðxÞ

q
dBtðrÞ,

8>>><
>>>:

(24)

where JðxÞ :¼
ffiffiffiffiffiffiffiffiffiffi
GðxÞ

p >
. If C commutes with J(x) (e.g., when C is a scalar

matrix), the last two terms become �Cr dt +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CGðxÞ

p
dBtðrÞ . It recovers

the RHMC dynamics equation (21) when no friction C ¼ 0, and recovers

the SGHMC dynamics equation (22) on a Hilbert space G(x) ≡ Σ (note in

which case r log pR ¼ r log pL). Liu et al. (2016a) also proposed a manifold

version of SGNHT:

ðgSGNHTÞ

dx ¼ GðxÞ�1r dt,

dr ¼ rx log pRðxÞ dt�
1

2
rx r>GðxÞ�1r

� �
dt� ξr dt +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CGðxÞ

q
dBtðrÞ,

dξ ¼ 1

m
r>GðxÞ�1r � 1

� �
dt,

8>>>><
>>>>:

(25)

which recovers the SGNHT dynamics equation (23) when G(x) ≡ Σ.

3.3 Riemannian MCMC in embedded space

The coordinate expressions of these dynamics allow straightforward simulation

in the coordinate space, as if in the usual Euclidean space. However, this may

also be problematic in some cases. When the manifold does not have a global

coordinate system, such as hyperspheres, coordinate simulation requires
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changing local coordinate system when the sample is about to move out of the

current one. In addition to this inconvenience, the metric tensor G(x) often goes
to singularity near the boundary of the coordinate system, which may cause

numerical problems. On the other hand, common manifolds are defined as a

subset of a higher-dimensional Euclidean space, which also endows the mani-

fold a Riemannian metric by pulling-back the Euclidean metric via the inclu-

sion map. This naturally gives an isometric embedding of the manifold as a

result (Section 2.7). In the embedded space the manifold is described globally.

Distributions on the manifold are also commonly defined in the embedded

space in the form of the density function pH w.r.t. the Hausdorff measure on

ΞðMÞ , such as the von Mises-Fisher distribution on hyperspheres. It is thus

more attractive to simulate the dynamics in the embedded space.

Brubaker et al. (2012) considered general manifold defined as a subset of

n via a constraint, and generalized HMC on such manifold. Simulation is

basically done using the usual leapfrog process in the embedded space subject

to the constraint for the sample and the induced constraint on the momentum.

This generalized leapfrog is called RATTLE and is still invertible, volume

preserving, and of the second order. But each simulation step requires solving

several nonlinear equations, which is done using Newton’s method in

the work.

Byrne and Girolami (2013) developed a simulation method in the embed-

ded space for HMC, called geodesic Monte Carlo (GMC). The name comes

from the use of explicit geodesic flow solutions for simulation on the embed-

ded manifold, which is available for common manifolds such as the simplex,

hypersphere, and the Stiefel manifold. It avoids the costly inner iteration for

solving nonlinear equations in each update step, in contrast to, e.g.,

Girolami and Calderhead (2011) and Brubaker et al. (2012). Adopting the

leapfrog integrator pattern (or, SSI), GMC splits the Riemannian Hamiltonian

dynamics equation (21) as:

dx ¼ GðxÞ�1r dt,

dr ¼ � 1

2
rx r>GðxÞ�1r

� �
dt,

8<
: +

dx ¼ 0,

dr ¼ r log pRðxÞ dt:

�

The first dynamics turns out to be the geodesic equation, which describes the

free motion on the manifold, in analogy to the uniform linear motion in a

Euclidean space. Its solution is just the geodesic flow, and for some common

manifolds there is a closed-form expression, e.g., this is the rotation along the

great circle on the hypersphere n�1:

yðtÞ ¼ yð0Þ cos ðαtÞ + ðvð0Þ=αÞ sin ðαtÞ, vðtÞ ¼ �αyð0Þ sin ðαtÞ + vð0Þ cos ðαtÞ,

where y � n�1 and v � Tyðn�1Þ are the embedded version of x and r, and
α¼kvð0Þk. For the second dynamics, since x does not change with time, the

solution is rðtÞ¼ rð0Þ+ tr logpRðxÞ , or yðtÞ¼ yð0Þ + tΛðyð0ÞÞr logpHðyÞ in
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the embedded space, where Λ(y) is the projection from the tangent space of

n to the tangent space of ΞðMÞ at y. For n�1, Λ(y) ¼ In � yy>. For drawing
the momentum variable, sampling r�Nð0,GðxÞÞ in the coordinate space is

equivalent to drawing r �Nð0, InÞ in the isometrically embedded space n

and projecting onto the tangent space using Λ. The final process is to draw

r from Nð0,GðxÞÞ and alternately simulating the two dynamics on an inter-

leaving time scheme, similar to the leapfrog integrator equation (20).

Byrne and Girolami (2013) also showed closed-form expressions of the geo-

desic flow and tangent space projection for the Stiefel manifold, which involves

computationally expensive matrix exponential. Yanush and Kropotov (2019)

then made the computation cheaper by replacing the exact operations with

a retraction operation, which is explored in the field of optimization on

Riemannian manifolds, and is shown to be sufficient to simulate the

dynamics.

Following this spirit, Liu et al. (2016a) developed simulation methods in

the embedded space for their proposed dynamics. The SGGMC dynamics

equation (24) is split as:

dx ¼ GðxÞ�1r dt,

dr ¼ � 1

2
rx r>GðxÞ�1r

� �
dt,

8<
: +

dx ¼ 0,

dr ¼ �JðxÞ>CJðxÞGðxÞ�1r dt,

�

+
dx ¼ 0,

dr ¼ rx log pRðxÞ dt +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2JðxÞ>CJðxÞ

q
dBtðrÞ,

(

where the first dynamics is the same. The second dynamics has solution r(t) ¼
J>expm(�Ct)JG�1r(0) or v(t) ¼ Λ expm(�Ct)v(0) in the embedded space,

where expm is matrix exponential and the quantities are evaluated at x(0) or
y(0) if not specified. For infinitesimal time interval ε, the solution is approxi-

mately v(ε) ¼ v(0) � εΛCv(0). The third dynamics can be simulated by

vðEÞ ¼ vð0Þ + Λðεr log pH + Nð0, 2CεÞÞ . The gSGNHT dynamics equation

(25) can be modified similarly. The two methods show remarkable accuracy

and scalability for the hypersphere inference task of the spherical admixture

model (Reisinger et al., 2010) on large datasets.

4 Particle-based variational inference methods

Although MCMC methods are perhaps the most popular sampling method for

their wide applicability and numerous success in various domains, there are

also complaints. The central drawback is the (auto)correlation among samples

since they are in a Markov chain. It downgrades the effective sample size, and

a long run is required for a reasonable approximation. This can be imagined

that if the target distribution has two equally high separated modes, the
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correlation tends to put the next sample in the same mode, so such set of sam-

ples are not as representative as the same amount of IID samples, which dis-

tribute in the two modes roughly equally. A considerable number of

simulation steps are required to get a chance for the sampler to find the other

mode. Besides the cost of the long run itself, evaluating the expectation of a

function also requires quite a lot evaluations on these large set of samples.

Recently there emerged another class of sampling methods that try to

approximate the target distribution using a fixed number of samples, or called

particles. They iteratively update the particles deterministically to minimize

the difference (typically the KL divergence) of the distribution they represent

to the target distribution. This is the spirit of variational inference, hence the

name particle-based variational inference (ParVI). The use of particles is more

flexible thus more accurate than parametric approximations that classical var-

iational inference uses. Since the particles need to approximate the target dis-

tribution jointly as a whole, they communicate/interact with each other, and

appear negatively correlated. So sample efficiency is promoted.

In the following we start with the groundbreaking version, SVGD (Liu and

Wang, 2016). The algorithm is then viewed from a geometric perspective as

approximate simulation to the gradient flow of the KL divergence on the Was-

serstein space and its variants, which can be seen as Riemannian manifolds of

distributions. We then show the consequences of the geometric perspective,

including variant algorithms, approximation techniques, and convergence

analysis.

4.1 Stein variational gradient descent

SVGD (Liu and Wang, 2016) updates the particles fxðiÞgNi¼1 using a determin-

istic dynamics dx ¼ Vt(x) dt such that the evolving distribution (qt)t decreases
the KL divergence to the target distribution p. The dynamics is chosen such

that the KL divergence KLpðqtÞ :¼ KLðqt k pÞ :¼ qt ½ log ðqt=pÞ� is mini-

mized steepest. To derive the expression for Vt(x), one needs to connect the

decreasing rate to the dynamics:

� d

dt
KLpðqtÞ ¼ qt ½r � ðpVtÞ=p� ¼ qt ½Vt � r log p + r � Vt�: (26)

The steepest descent is achieved if Vt maximizes Eq. (26). As the objective is

linear in Vt, it can be made arbitrarily large by increasing the norm of Vt. So

the maximization makes sense only if the norm is fixed, i.e., finding the stee-

pest descending direction, and the minimum represents the steepest rate of

decrease which is used as the magnitude in that direction:

Vopt
t :¼ max � argmax

Vt�X,kVtkX¼1

� d

dt
KLpðqtÞ: (27)
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This leads to the next subtlety that which normed space X should be used for Vt.

If X is taken as the Hilbert space L2
qt
ðmÞ :¼ fV : m ! m| kVkL2

qt
< ∞g

with inner product hU,ViL2
q
:¼

R
UðxÞ �VðxÞqðxÞ dx, we have:

VL2
t ¼ r log ðp=qtÞ: (28)

But this result is not easily estimable since it requires r log qt while we only

have samples/particles of qt. Liu and Wang (2016) then used X ¼ Hm, where

H is the reproducing kernel Hilbert space (RKHS) of a kernel function K :
m � m !  (Steinwart and Christmann, 2008, Ch. 4), which can be seen

as the linear space of functions
P

lαlKð � , xðlÞÞ
	 


(summation over finite

set or countably infinite set in the sense of pointwise convergence) with inner

product
P

lαlKð � , xðlÞÞ,
P

l0βl0Kð � , yðl
0ÞÞ

� �
H :¼

P
l,l0 αlβl0KðxðlÞ, yðl

0ÞÞ . It is

named after its reproducing property hf ð � Þ,Kð � ,xÞiH ¼ f ðxÞ, 8f �H and that

it is a Hilbert space. The solution is then:

VSVGD
t ðxÞ :¼ qtðx0Þ½Kðx, x

0Þrx0 log pðx0Þ + rx0Kðx, x0Þ�: (29)

The expression depends on qt only in terms of expectation, which can be esti-

mated by averaging over the particles. The particles are then updated by simu-

lating the dynamics:

x
ðiÞ
k+1 ¼ x

ðiÞ
k + ε

1

N

XN
j¼1

K
ðijÞ
k r log p x

ðjÞ
k

� �
+ r

x
ðjÞ
k

K
ðijÞ
k

� �
, (30)

where K
ðijÞ
k :¼ K x

ðiÞ
k , x

ðjÞ
k

� �
. Since K(ij) increases as x(i) and x(j) move closer,

the gradient rxðjÞK
ðijÞ points toward x(i) at x(j), and points away from x(j) at

x(i). So the second term in the update pushes x(i) away from all other particles,

which presents a repulsion force and incurs a negative correlation among the

particles. Another attractive property is that it degenerates to gradient descent tar-

geting the mode of p(x) if there is only one particle, sincerx0K(x, x
0)jx0¼x ¼ 0, so

it naturally transits to the maximum a posteriori (MAP) estimate.

4.2 The Wasserstein space

As seen above, the derivation of SVGD involves geometric considerations

such as steepest descending direction, which is very much alike a gradient.

Can this geometric perspective be formalized so that Eq. (27) is the gradient

of KLp on some space of distributions? The Wasserstein space gives an

elegant answer.

Particularly we consider the 2-Wasserstein space P2ðMÞ on a complete

metric space M (¼ m for common ParVIs), defined as the set of all (unnec-

essarily absolutely continuous) distributions on M with finite variance:

9x0 �M s:t:q½dMðx, x0Þ2�<∞. It is usually equipped with the 2-Wasserstein
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distance and seen as a metric space (Villani, 2008, Def. 6.4; Ambrosio et al.,

2008, Ch. 7), which explains the name. The 2-Wasserstein distance (Villani,

2008, Def. 6.1; Ambrosio et al., 2008, Eq. (7.1.1)) between two distributions

p,q �P2ðMÞ arises from the optimal transport problem, and is defined as the

minimal cost for transporting mass on M distributed as p(x) to distribute as

q(x0) by all possible (may be stochastic) transport plans π(x0jx):

dP2
ðp,qÞ :¼ inf

πðx0 jxÞ:
R
M
πðx0jxÞ dpðxÞ¼qðx0Þ

Z
M�M

dMðx,x0Þ2 d πðx0jxÞpðxÞð Þ

0
@

1
A

1=2

:

(31)

We first note that quite a range of geometric structures can be extended

to a general metric space (Ambrosio et al., 2008, Part I). For future refer-

ence, we mention a particular example of the definition of the gradient flow

(qt)t of a function F on P2ðMÞ as a metric space in terms of the minimizing

movement scheme (Ambrosio et al., 2008, Def. 2.0.6): (qt)t is the limiting

curve when τ ! 0 of the piecewise constant curve (Ambrosio et al., 2008,

Def. 2.0.2):

qt+ε :¼ argmin
q�P2ðMÞ

1

2τ
d2P2

ðq,qtÞ + FðqÞ, 8ε � ð0,τ�: (32)

It extends the implicit Euler discretization.o Nevertheless, it is more attractive

to consider the space as a Riemannian manifold (if possible) for explicit cal-

culation and simulation. This is possible for P2ðMÞ. We start with character-

izing tangent vectors on it. See Fig. 8 for an illustration.

Similar to the process in defining tangent vector for a general manifold in

Section 2.2, consider a curve (qt)t on P2 which is an evolving distribution on

M. As mentioned in Section 3.1, a dynamics induces an evolving distribution,

and the connection is given by the FPE (6). If we only consider deterministic

dynamics (D ≡ 0), the FPE becomes what is commonly called the continuity

oOther examples of concepts mentioned in Ambrosio et al. (2008) for a general complete metric

space: the speed (metric derivative) at a point on a curve (Thm. 1.1.2), curve absolute continuity

(Def. 1.1.1) and length (Lem. 1.1.4), geodesic (Def. 2.4.2), gradient of a function in terms of

norm/modulus (strong (Def. 1.2.1) and weak (Def. 1.2.2) upper gradient; local (also Villani,

2008, Prop. 23.1(ii)), and global slopes (Def. 1.2.4) are weak, and strong (for lower semicontin-

uous functions) upper gradients (Thm. 1.2.5); relaxed slope (Section 2.3) is the local slope under

some conditions (Rem. 2.3.2) ), and gradient flow [curve of maximal slope (Def. 1.3.2) in terms of

the evolution variational inequality, which indicates energy identity (also Villani, 2008, Prop.23.1

(ii)) in some cases (Rem. 1.3.3); (generalized) minimizing movement scheme (Def. 2.0.6), whose

convergence (Cor. 2.2.2) and connection to curve of maximal slope (Thm. 2.3.1) and energy identity

(Thm. 2.3.3) are made; curve with dispersion from geodesic bounded by directional derivative along

the geodesic (Villani, 2008, Prop. 23.1(iv), Def. 23.7); they all coincide with the Riemannian

gradient flow (Villani, 2008, Prop.23.1, Rem. 23.4; Ambrosio et al., 2008, Thm. 11.1.6)].
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equation or the conservation-of-mass formula, which takes the following form

on manifold M:

∂tqt ¼ �divðqtVtÞ, (33)

where qt is the density under the Riemannian measure [(Villani, 2008, p. 28);

see e.g., Liu and Zhu (2018, Appx. A1) for deriving the manifold extension].

The conclusion equation (33) can be extended to distributions that do not have

a density (i.e., not absolutely continuous) under the Riemannian measure in

the sense of weak derivatives (or called in the sense of distributions)

(Ambrosio et al., 2008, Eq. (8.1.3), Rem. 8.1.1):

�
Z


Z
M
∂tftðxÞ dqtðxÞdt¼

Z


Z
M
hgrad ftðxÞ,VtðxÞiTxM dqtðxÞdt, 8f � C∞

c ð�MÞ:

(Note Eq. 3 for understanding this form of Eq. 33.) Conversely, it is shown

(Ambrosio et al., 2008, Thm. 8.3.1; Villani, 2008, Thm. 13.8; Erbar et al.,

2010, Prop. 2.5) that for any curve (qt)t on P2ðMÞ, at point qt there exists a

vector field Vt on M such that the continuity equation (33) holds in the weak

sense, and the unique existence (up to a set of dqt(x)dt-measure zero) is

attained in a subspace of vector fields,

FIG. 8 Illustration of the support-space vector-field representation of a Wasserstein tangent vec-

tor. Similar to the illustration in Fig. 7, when particles fxðiÞt gi distribute obeying qt at time t and
move under a deterministic dynamics dxt ¼ Vt(xt) dt (bottom two red arrows), i.e., each moving

with velocity VtðxðiÞt Þ, they form a new configuration at time t + ε which defines a new distribution

qt+ε. As ε ! 0, the dynamics induces a continuously evolving distribution (qt)t, which is a curve

on the Wasserstein space P2ðMÞ. The tangent vector along the curve at qt is the instantaneous

evolution of the distribution at t, which is given by the continuity equation (33) (or, the FPE

(6) without diffusion), which is in turn determined by Vt. So the vector field Vt represents a

Wasserstein tangent vector (the red arrow at the top).
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fgrad φ|φ � C∞
c ðMÞgL

2
qt
ðMÞ

, (34)

where the overline means the closure as a subset of the Hilbert space L2
qt
ðMÞ.p,q

This correspondence suggests using a vector field on M to represent a tangent

vector on P2ðMÞ, and using the above subspace of vector fields equation (34)

as the tangent space TqtP2ðMÞ (Ambrosio et al., 2008, Def. 8.4.1, Prop. 8.4.5;

Erbar et al., 2010, Def. 2.3).

What is particularly insightful of this correspondence is that the vector

field Vt defines a dynamics on M which determines how the Wasserstein

curve (qt)t moves along the corresponding Wasserstein tangent vector as an

evolving distribution. So we can carry out simulation of the Wasserstein curve

by simulating the dynamics on samples/particles in M. Specifically,

Exp�(εVt(�))#[qt] is a first-order approximation of qt+ε in terms of the Wasser-

stein distance dP2
(Ambrosio et al., 2008, Prop. 8.4.6), where Exp � ðεVtð � ÞÞ :

M!M, x 7! ExpxðεVtðxÞÞ is the exponential map on the support space M
as a function of position, and ϕ#[q] is the pushed-forward distribution of

q by measurable map ϕ :M!M , defined by ϕ#½q�ðIÞ :¼ qðϕ�1ðIÞÞ for

any measurable subset I �M (Billingsley, 2012, p. 196). More concretely,

this means that if {x(i)} is a set of particles of qt, then fExpxðiÞ ðεVtðxðiÞÞÞg is

approximately a set of particles of qt+ε.
For a Riemannian structure, a natural inner product in the tangent space

TqtP2ðMÞ is the one inherited from L2
qt
ðMÞ. What makes a coincidence is

that the induced distance in the Riemannian sense (Eq. 2) is exactly the

2-Wasserstein distance (Eq. 31), which is revealed by the Benamou–Brenier
formula (Benamou and Brenier, 2000; Otto, 2001; Villani, 2008, Ch. 15).

So this Riemannian structure can be seen as a finer characterization of the

Wasserstein space as a metric space. Various geometric objects can be then

induced. Of particular interest is the gradient of a function F on P2ðMÞ .
The general formulation is (Villani, 2008, Ex. 15.10; Ambrosio et al., 2008,

Lem. 10.4.1):

pFor this conclusion, Ambrosio et al. (2008, Thm. 8.3.1, Def. 5.1.11) and Erbar et al. (2010,

Prop. 2.5) require the curve (qt)t to be locally absolutely continuous in a metric-space sense

(Ambrosio et al., 2008, Def. 1.1.1; Erbar et al., 2010, Def. 2.2), while Villani (2008, Thm.

13.8) further restricts (qt)t to be Lipschitz-continuous which enlarges the subspace by allowing

φ � C1
cðMÞ.

qThe space defined in Eq. (34) can be seen as the quotient space of L2
qt
ðMÞ under the equivalent

relation U � V : div(qtU) ¼ div(qtV ), i.e., they induce the same evolving distribution via the

continuity equation (33). More precisely, the space (34) is the orthogonal complement of

fV � L2
qt
ðMÞ j divðqtVÞ ¼ 0g (Erbar et al., 2010, Lem. 2.4), as can be seen from Eq. (3):

divðqtVÞ ¼ 0,
R
Mφ divðqtVÞ dωg ¼ �

R
Mhgrad φ, ViTxMqt dωg ¼ �hgrad φ, ViL2

qt
ðMÞ ¼

0, 8φ � C∞
c ðMÞ. This space (34) is also equivalent to the set of vector fields that achieve a certain

evolving distribution with the minimum L2
qt
ðMÞ norm: fargminV � L2

qt
ðMÞ,divðqtVÞ¼f k VkL2

qt
ðMÞ

j f � L1ωg
ðMÞ s:t:

R
Mf dωg ¼ 0g (Erbar et al., 2010, Lem. 2.4).
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grad FðqÞ ¼ grad
δF
δq ðqÞ, (35)

where the function δF
δq ðqÞ on M is the variation of F at q as a functional of

distribution q, characterized by d
dt FðqtÞ ¼

R
M

δF
δq ðqtÞ d∂tqt in the sense of

weak derivative for any evolving distribution (qt)t. Note that the l.h.s. is a gra-
dient vector at q on the Wasserstein space P2ðMÞ, while the r.h.s is a gradient
function as a vector field on the supporting manifold M. Particularly for the

KL divergence, its gradient is given by (Villani, 2008, Formula 15.2, Thm.

23.18)r:

grad KLpðqÞ ¼ grad log ðq=pÞ: (36)

Note that this coincides with �VL2
t (Eq. 28) on Euclidean spaces. For an anal-

ogy to the Euclidean case, the gradient flow converges exponentially if the

Wasserstein function is geodesically strongly convex on the Wasserstein space

(Villani, 2008, Thm. 23.25, Thm. 24.7; Ambrosio et al., 2008, Ex. 11.1.2). For

the KL divergence, this requires log p to be strongly log-concave for M ¼ m

(Ambrosio et al., 2008, Def. 9.4.9, Lem. 9.4.7) and a similar but involved

requirement for a general manifold M (Villani, 2008, Thm. 17.15). Gradient

flow can then be defined and simulated in the way described in the previous

paragraph.

As a literature remark, Villani (2008) also made detailed description on the

optimal transport problem, dedicated analysis on the curvature of P2ðMÞ
induced from that of the base manifold M, and on the convexity of functions

on P2ðMÞ. Ambrosio et al. (2008) extended and formalized the concept of gra-

dient flow and other geometric objects for general metric spaces. For the

Wasserstein space, they only considered the Euclidean support but made anal-

ysis in parallel on the p-Wasserstein space PpðmÞ for p 6¼ 2, which is no longer

a Riemannian manifold but a metric space. Erbar et al. (2010) and Santambrogio

(2017) gave concise summaries of the two books. Lott (2008) presents explicit

calculations of more Riemannian manifold objects for P2ðMÞ.
In the spirit of information geometry (see Fig. 1), Chen and Li (2018) and

Wang and Li (2022) also considered using the Wasserstein distance (resp. KL

divergence) to measure the infinitesimal difference between two likelihood

distributions, and induced a parametric Wasserstein metric (resp. Fisher–
Rao metric). More variants are also considered (e.g., the Stein geometry to

be introduced in Section 4.3.2).

4.3 Geometric view of particle-based variational inference methods

As mentioned in Section 4.1, the development of SVGD resembles the pro-

cess of defining the gradient as a steepest ascending direction on an abstract

rTo make the expression well defined, q needs to be absolutely continuous w.r.t. p.
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space. We now review some formal descriptions of this intuition from the

view on the Wasserstein space and a variant space. In this section we restrict

our attention to the Euclidean case M ¼ m.

4.3.1 View from the Wasserstein space

As seen from Section 4.2, theory on the Wasserstein space formalizes the

intuition of the gradient of a Wasserstein function, and links it to a particle

dynamics, so it is a natural choice (Chen et al., 2018a; Liu et al., 2019a).

Indeed, as mentioned right below Eq. (27), if the space X is taken as

L2
qt
ðmÞ, the optimal vector field VL2

t is just �grad KLp by Eq. (36). To relate

it to the SVGD vector field equation (29), Liu et al. (2019a, Thm. 2) gave the

following relation:

VSVGD
t ¼ max � argmax

Vt�Hm ,kVtkHm¼1

h�grad KLpðqtÞ,VtiL2
qt
ðmÞ,

which suggests VSVGD
t is the projection of the Wasserstein gradient of KLp

onto the vector-valued RKHS Hm.

To further understand this approximation, note that if the space of optimiza-

tion is taken as L2
qt
ðmÞ, then �grad KLp is recovered. For a Gaussian kernel,

the replacement from L2
qt
ðmÞ to Hm is roughly doing a kernel smoothing:

Hm is isometrically isomorphic to fϕ � K j ϕ � L2
qt
g
L2
qt

(Liu et al., 2019a,

Thm. 3), where ðϕ � KÞðxÞ :¼
R
mϕðx0ÞKðx, x0Þ dx0 is the convolution of ϕwith

the kernel K. Furthermore, for each individual ϕ, this kernel smoothing

reduces its “sharpness”: elementwise, ϕi
* K is

ffiffi
2
π

q
B
σ -Lipschitz, where B :¼

supx�m jϕiðxÞj bounds the original function ϕi, and σ is the bandwidth of the

Gaussian kernel K (He et al., 2022, Thm. 2). This smoothing operation

over vector fields is shown equivalent to smoothing the density itself,

i.e., using ~qK :¼ q � K in place of q so that the empirical distribution q̂ðxÞ :¼
1
N

PN
i¼1δxðiÞ ðxÞ can be plugged in for q, where δxðiÞ ðxÞ denotes the Dirac delta

measure that puts all the probability mass only at the point x(i). The smoothing

operation (in either way) is regarded mandatory for a well-defined vector field

(Liu et al., 2019a), as KLp(q) is defined as infinity if q is not absolutely continu-
ous w.r.t. p, which is the case when q ¼ q̂.

4.3.2 View from the Stein geometry

Under the view of Wasserstein space, the kernel enters only as a smoothing

approximation to geometric objects. This may be insufficient to analyze the

SVGD dynamics precisely, and a geometric structure involving the kernel is

expected. Liu (2017) made an attempt where the tangent space, i.e., a space
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of vector fields, is taken as the vector-valued RKHS Hm with the same inner

product. Under this choice, the gradient of KLp recovers the SVGD vector

field equation (29) indeed. Nevertheless, this is only a formulation. For a

complete geometric development, it remains to show the manifold as a set

and the one-to-one correspondence between an element in the defined tangent

space and a tangent vector of a curve on the manifold. In this spirit, the theory

is improved by Duncan et al. (2019), who called it Stein geometry.s

Specifically, the manifold as a set is taken as the collection of fully sup-

ported, absolutely continuous distributions that make K(x, x) have finite

expectation, denoted PK . In contrast to using the entire Hm , they refine the

tangent space at q � PK as (Duncan et al., 2019, Def. 5):

TqPK :¼ fKqrφ|φ � C∞
c ðmÞgH

m

,

where Kq : L
2
qðmÞ ! H, ðKq f ÞðxÞ :¼

Z
m
Kðx, x0Þf ðx0Þqðx0Þ dx0

is the integral operator of kernel K and is applied elementwise if the operand

is a vector.t This is similar to Eq. (34) except that kernel smoothing is applied

to each vector field, so it guarantees a unique representation of a tangent vec-

tor of PK (Duncan et al., 2019, Lem. 7(2)) (see Footnote 4.2). Under the same

inner product of Hm , the gradient of a function F on PK is (Duncan et al.,

2019, Lem. 9) gradPK
FðqÞ ¼ Kqr δF

δq ðqÞ, which is the kernel-smoothed

Wasserstein gradient equation (35). This leads to the SVGD vector field

gradPK
KLpðqtÞ ¼ �VSVGD

t , (37)

since VSVGD
t ¼ KqtV

L2
t ¼ �Kqtgrad KLpðqtÞ by definition (Eq. 29) (and inte-

gration by parts). More geometric structures such as the corresponding dis-

tance (Duncan et al., 2019, Def. 13) and geodesic (Duncan et al., 2019,

Prop. 18) are developed. Note that if K(x, x0) ¼ δx(x0)/q(x0), then Kq is the

identity operator, and Stein geometry reduces to the Wasserstein geometry.

sNevertheless, this name may not well reflect the exact characteristics of the theory. Back to the

origin (Liu and Wang, 2016), the label “Stein” is introduced via the connection of the objective in

Eq. (27) to Stein’s method (Stein, 1972) for constructing probability metric (Stein discrepancy

(Gorham and Mackey, 2015)), where Sp : V 7! � r � ðpVÞ=p is called Stein operator. It

describes how the distribution evolves and is also used in the Wasserstein space case. What is spe-

cial in the new geometric structure is the incorporation of kernels. So it may be better called

“kernel-smoothed geometry” or “kernelized-Stein geometry.”
tDuncan et al. (2019) originally defined the tangent space as the corresponding space of ∂tqt via

the continuity equation (33), i.e., applying V 7! �r � (qV ) to the definition here. The results

of the two definitions are isometrically isomorphic thus both are Hilbert spaces (Duncan et al.,

2019, Lem. 7).
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Duncan et al. (2019) also introduced some concepts and results that are

particularly useful for analyzing the SVGD dynamics. They defined the Hes-

sian of KLp (Lem. 22), local geodesic strong convexity of KLp in terms of the

Hessian (Lem. 25), and the consequent exponential convergence of KLp near

the optimal solution p (Thm. 20). Furthermore, they found an equivalent cri-

terion for the strong convexity of KLp near p with strength λ > 0, called the

Stein–Poincar�e inequality (Lem. 32):

hφ,Ap,KφiL2pðmÞ 
 λhφ,φiL2pðmÞ, 8φ� C∞
c ðmÞ s:t:

Z
m
φ dp¼ 0,

where Ap,Kφ :¼�r � ðpKprφÞ=p, 8φ� C∞
c ðmÞ

(38)

is the kernelized Barbour’s generator of the Stein gradient flow of KLp, which

relates to the kernelized Stein operator by Ap,Kφ ¼ Sp,Krφ.u This criterion

makes convexity identification easier, since Ap,K is a self-adjoint and positive

semidefinite operator on L2qðmÞv which leads to the linear algebra problem of

spectral gap.

The convexity can also be described in other ways. Recall that a nice prop-

erty of a convex function is the exponential convergence along its gradient

flow. For KLp, we can impose a simple condition to achieve exponential con-

vergence: KLpðqtÞ 	 � 1
2λ

d
dtKLpðqtÞ, where (qt)t is the gradient flow of KLp

on PK . Substituting Eq. (37) into Eq. (26), we get the Stein-log-Sobolev
inequality:

KLpðqÞ 	
1

2λ
Ip,KðqÞ,

where Ip,KðqÞ :¼ p½rðq=pÞ � Kprðq=pÞ� ¼kKpr log ðq=pÞk2H (39)

is again a kernelized object called Stein–Fisher information. In fact, it is a

probability metric constructed using Stein’s method, called the kernel Stein
discrepancy (after square-rooted) (Chwialkowski et al., 2016; Gorham and

Mackey, 2017; Liu et al., 2016b), which generalizes the Fisher divergence.

Stein-log-Sobolev inequality is a stronger condition than Stein–Poincar�e
inequality (Duncan et al., 2019, Eq. (61)). Note that this line of developing

a convexity theory on a probability manifold is in parallel to that of Villani

(2008) for the Wasserstein space P2ðMÞ (Hessian formula (15.7), convexity

uLikewise, the vanilla Barbour’s generator (Barbour, 1990) of the Wasserstein gradient flow of

KLp (which is the overdamped Langevin dynamics) is Apφ :¼ �r � ðprφÞ=p, which holds the

same relation to the Stein operator SpðVÞ :¼ �r � ðpVÞ=p (see also Footnote s).
vThe domain in the definition (38) can be extended to L2qðmÞ in the sense of weak derivative.

Also note C∞
c ðmÞL

2
qðmÞ ¼ L2qðmÞ if q is absolutely continuous (Ková�cik and Rákosnı́k, 1991,

Thm. 2.11).
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(Def. 16.5), Poincar�e inequality (Def. 21.17), log-Sobolev inequality (Def.

21.1) and the sufficiency for the former (Thm. 22.17)). The Wasserstein

theory can be recovered by choosing K(x, x0) ¼ δx(x0)/q(x0).
This kernelized extension is more suitable for analyzing SVGD. Korba

et al. (2020) made a nonasymptotic analysis. In the infinite-particle regime,

the difference of KLp between two adjacent updates is bounded by Ip,K at

the former update (Prop. 5; also Liu, 2017, 3.3) which serves as a descent

lemma in optimization theory, and the cumulative moving average of Ip,K
converges to zero inversely linearly (Cor. 6). For bounded log p and Lipschitz

kernel with Lipschitz gradients, they also found a bound on the expected

squared Wasserstein distance between the empirical distribution of finite

particles and the true particle distribution, which decays inversely to the

square-root of the number of particles. Chewi et al. (2020) reformulated

VSVGD
t ¼ �Kqtr log ðqt=pÞ as �Kqtððp=qtÞrðqt=pÞÞ ¼ �Kprðqt=pÞ , which

is the Wasserstein gradient of the chi-squared divergence χ2pðqtÞ :¼R
ðq2t =pÞ dx� 1 by Eq. (35) (up to a factor of 2). The integral operator Kp does

not depend on time anymore which inspires a characterization for a desired

kernel and a new ParVI method. They also proved exponential convergence of

KLp along the (unkernelized) χ2p gradient flow given Poincar�e inequality, and

the inverse quadratic, or exponential convergence of χ2p itself given Poincar�e

inequality, or the log-Sobolev inequality (implied by log-concavity of p).

4.4 Geometric view of MCMC dynamics and relation to ParVI
methods

As an interlude, one may also wonder if a similar geometric view for MCMC

dynamics is possible. As MCMC dynamics do not need kernel smoothing, the

Wasserstein-space view is more relevant.

4.4.1 Langevin dynamics

To begin with, it was found decades ago by Jordan et al. (1998) that the

Langevin dynamics equation (11) induces evolving distributions that are the

gradient flow of KLp on the Wasserstein space P2ðmÞ. The argument was

made where the Wasserstein gradient flow is defined in the metric-space

sense of the minimizing movement scheme (Eq. 32) (so it is also called the

JKO scheme following the authors’ initials). With the Riemannian structure

introduced in Section 4.2, this can be seen more directly: the dynamics

dxt ¼ r log ðp=qtÞ dt (in the sense of weak derivative if p or qt as a distribu-

tion is not absolutely continuous) defined by the Wasserstein gradient of KLp

(Eqs. 36 and 28) and the Langevin dynamics equation (11) induce the same

evolving distribution due to FPE (6).
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This coincidence also holds for their Riemannian versions, dxt ¼
G�1r log ðpL=qLtÞ dt in coordinate space from the gradient-flow side

(Eq. 36), and Eq. (14) in coordinate space from the Riemannian Langevin

dynamics side (Eq. 12).w Alternatively, we can assume this coincidence in

the first place, and derive the coordinate expression of the Riemannian

Brownian motion via FPE (6):ffiffiffi
2

p
d~Bt ¼ r � ð

ffiffiffiffiffiffiffi
jGj

p
G�1Þ=

ffiffiffiffiffiffiffi
jGj

p
dt +

ffiffiffiffiffiffiffiffiffiffiffi
2G�1

p
dBt,

which bridges Eq. (12) to Eq. (13) or Eq. (14). This could serve as an alterna-

tive way to generalize Brownian motion to Riemannian manifolds, in addition

to using the generalization of the heat equation as introduced in Section 3.2

(Eq. 14).

Compared to the general form of MCMC dynamics equation (8), the

Wasserstein gradient flow of KLp, i.e., the Riemannian Langevin dynamics

equation (14), covers the case when Q ¼ 0 and D is nondegenerate.

4.4.2 Hamiltonian dynamics

Another instance that has a geometric interpretation is the Hamiltonian

dynamics used in HMC. Since it is a classical physical process, its analysis

has a longer history. Typically it is interpreted as the Hamiltonian flow/vector

field of a function called Hamiltonian, which is log pðx,rÞ in this context, on a

symplectic manifold,x or more commonly on the cotangent bundle T*B of a

manifold B with its canonical symplectic structure (Betancourt et al., 2017).y

A key feature of the Hamiltonian flow is that it keeps Hamiltonian constant.

wThe dynamics expressions in coordinate space all use densities w.r.t. the Lebesgue measure per

requirement of the FPE (6).
xA symplectic structure is a nondegenerate (ςx 6¼ 0, 8x � M ) and closed (dς ¼ 0) 2-form

(Section 2.3) on the manifold M. The Hamiltonian vector field Xf of a function f, which is called

the Hamiltonian, is characterized by ςðXf ,VÞ¼V½ f �, 8V � T ðMÞ. Such Xf is unique:

ςðXf �X0
f ,VÞ¼ ςðXf ,VÞ�ςðX0

f ,VÞ¼V½ f ��V½ f � ¼ 0 indicates Xf �X0
f ¼ 0 since ς is nondegener-

ate. It keeps Hamiltonian invariant: Xf[f] ¼ ς(Xf, Xf) which is 0 since ς is antisymmetric. Its coor-

dinate expression is ς ¼
P

1	i<j	m ςij dx
i ^ dxj, where the m � m matrix (ςij) is antisymmetric.

Note that det½ðςijÞ� ¼ det½ðςijÞ>�¼ det½�ðςijÞ�¼ ð�1Þmdet½ðςijÞ�, so the nondegeneracy requires m

to be even.
yLet fxigmi¼1 be a coordinate system of B. Recalling Section 2.3, at each point x � B, fdxigmi¼1 is a

basis of T*
xB, and any 1-form χ has a coordinate expression χ ¼ ri dx

i. So fxi,rigmi¼1 is a coordinate

system of T*B. The canonical symplectic structure is then defined as ς ¼
Pm

i¼1dx
i ^ dri , which

can be shown to be coordinate independent. See e.g., Da Silva (2001) for more information. Under

this construction, the coordinate expression of ς is Sm defined below.
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Similar to the Riemannian structure case, a symplectic structure can be

constructed to the Wasserstein space P2ðMÞ using that of M (Ambrosio

and Gangbo, 2008; Gangbo et al., 2010, Ch. 6). For the cotangent bundle

T*B of a base Riemannian manifold B with its canonical symplectic structure,

the resulting Hamiltonian vector field of a function H on the Wasserstein

space P2ðT*BÞ is:

XFðqÞ ¼ πq �Smgradx,r
δH
δq


 �
,

where Sm :¼ 0 �Im
Im 0


 �
, and πq is the projection fromL2

qðT*BÞ to TqP2ðT�BÞ.z

Particularly for KLp where pðx,rÞ :¼ pðxÞN ðrj0,ΣÞ in the Euclidean case, this

Hamiltonian vector field recovers the Hamiltonian dynamics equation (19).aa

This corresponds to the general form of MCMC dynamics equation (8)

when D ¼ 0 and Q ¼ S. Although a more general Q can be interpreted as a

general symplectic structure, a symplectic structure always requires the

dimension of the manifold to be even, following the nondegeneracy require-

ment on its 2-form representation (see Footnote x).

4.4.3 General MCMC dynamics

To enclose the gap to the general form of MCMC dynamics equation (8), new

geometric constructions are expected. For this, Liu et al. (2019b) introduced

the so-called fiber-Riemannian Poisson (fRP) structure that generalizes the

Riemannian and symplectic structures, and the fiber-gradient Hamiltonian

(fGH) flow that generalizes the gradient and Hamiltonian flows.

4.4.3.1 Fiber-Riemannian structure and fiber-gradient flow

For a positive semidefinite D, it can be transformed to DðxÞ ¼
CðxÞ 0

0 0


 �
by choosing a proper coordinate system ðx1,…,xmÞ¼ ðy1,…,y‘,z1,…,zm�‘Þ,
where the ‘ � ‘ matrix C(x) is everywhere positive definite (thus nondegener-
ate). The manifold M can then be split into two parts: the space F with coor-

dinates ðy1,…,y‘Þ that correspond to the matrix C, and the space M0 with the

rest coordinates ðz1,…,zm�‘Þ. On the first part, C(x) ¼ C(y, z) can be treated

as the inverse Riemannian metric G�1(yjz) on that space, which matches the

Wasserstein gradient flow. But such a metric in general also depends on the

position z in the second part M0 , which is out of the F space itself. To

zThat is, subtracting a vector field V that satisfies div(qV ) ¼ 0 to make the vector field achieve

minimal L2
q norm.

aaUp to a minus sign; note that the additional part V ¼
�rr log q

rx log q


 �
has r� (qV ) ¼ 0.
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describe such dependency, the construct of fiber bundle is introduced, which

is roughly a generalization of the product space M¼F �M0 , where both

factor spaces F and M0 can be manifolds, and at each point of the second

space z �M0, the first space is allowed to have a z-specific structure (hence

denoted F z) while is still diffeomorphic to F. The above G�1(yjz) can then be

interpreted to define a Riemannian structure on the corresponding fiber

space F z. This partial Riemannian structure defined by D(x) is thus called a

fiber-Riemannian structure by Liu et al. (2019b). Correspondingly, the gradi-

ent now can only be defined on each fiber space, and the union of gradients

over all fibers F z,8z �M0 is defined as a fiber gradient:

gradfib f ðxÞ ¼ DijðxÞ∂j f ðxÞ∂i: (40)

However, it is hard to develop a fiber-Riemannian structure on the

Wasserstein space P2ðMÞ, so Liu et al. (2019b) turn to consider P
�
2ðMÞ :¼

fqð � jzÞ �P2ðF zÞ|z �M0g. It naturally has a fiber-Riemannian structure.

The fiber gradient of KLp then recovers the first part of the MCMC dynamics

equation (10) exactly:

�πqðgradfibKLpðqÞÞ ¼ Dr log ðp=qÞ: (41)

4.4.3.2 Poisson structure and Hamiltonian flow

For a general antisymmetric Q, it can be viewed as a Poisson structure on the

manifold M. A Poisson structure refers to a Poisson bracket {�, �}, which has

its origin from classical mechanics describing the evolution of a mechanical

quantity. Formally, {�, �} is a Lie bracket on C∞ðMÞ , i.e., an antisymmetric

bilinear C∞ðMÞ � C∞ðMÞ ! C∞ðMÞ map with Jacobi identity {f, {g, h}} +

{g, {h, f}} + {h, {f, g}} ¼ 0, that satisfies the Leibniz rule {f, gh} ¼ g{f, h} +

{f, g}h. Since the Poisson bracket is linear and has a differentiation behavior, it

can be linearly represented using tangent-vector basis for any given coordinate

system: {f, h} ¼ {xi, xj}∂if∂jh ¼
P

1	i<j	m{x
i, xj}(∂i f∂jh � ∂jf∂ih) ¼

P
1	i<j	m

{xi, xj}(∂i� ∂j � ∂j � ∂i)(df� dh)¼
P

1	i<j	m{x
i, xj}(∂i^∂j)(df� dh). This sug-

gests another representation of the Poisson structure as a bivector (or 2-vector)

fieldab β(x)¼
P

1	i<j	mβ
ij(x)∂i ^ ∂j, where (β

ij)(x) is everywhere an antisymmet-

ric matrix (dual to the symplectic structure; see Footnote x) and satisfies the

corresponding differential Jacobi identity βil∂lβ
jk + βjl∂lβ

ki + βkl∂lβ
ij ¼ 0, 8i, j, k.

abFormally, dual to a 2-form (Section 2.3), a bivector field is everywhere an antisymmetric

bilinear function on ðT�
xMÞ2 (where df � dh lives), or alternatively a combination of the wedge

products (antisymmetrized tensor product) of vector pairs (hence the name).
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The correspondence between the two representations is given by {f, h}¼ β(df, dh).
As both the Poisson structure (a 2-vector) and the symplectic structure (a 2-form)

bear the antisymmetric bilinearity, they have a one-to-one correspondence via the

linear space duality if the Poisson structure is nondegenerate (see Footnote x;

Fernandes and Marcut, 2014, Lem. 1.28). So a Poisson structure covers more than

a symplectic structure, as it does not have to be nondegenerate; particularly, it

allows an odd-dimensional manifold.

Similar to the case on a symplectic manifold, a Hamiltonian flow can also

be defined under a Poisson structure. The corresponding Hamiltonian vector

field is defined as Xh(�) :¼ {�, h}, which keeps the Hamiltonian invariant

Xh(h) ¼ 0, as expected. It holds the following coordinate expression from

definition:

XhðxÞ ¼ βijðxÞ∂jhðxÞ∂i: (42)

A Poisson structure f � , � gP2ðMÞ on the Wasserstein space P2ðMÞ can

also be developed using that f � , � gM of M (Lott, 2008, Sec. 6; Gangbo

et al., 2010, Sec. 7.2). For functions F(q), H(q) on P2ðMÞ, define their Pois-

son bracket as fF,HgP2ðMÞðqÞ :¼
R
M

δF
δq ðqÞ,

δH
δq ðqÞ

� �
M

dq (note δF
δq ðqÞ and

δH
δq ðqÞ are functions on M ). The corresponding Hamiltonian flow on the

Wasserstein space P2ðMÞ is given per point q as XHðqÞ¼ πqðXδH
δqðqÞÞ, where

the projection πq is used to map the dynamics XδH
δqðqÞ to the Wasserstein tan-

gent space TqP2ðMÞ (Eq. 34) while achieving the same evolving distribu-

tion. Particularly, for KLp on P2ðMÞ, the Hamiltonian flow is (Liu et al.,

2019b, Lem. 2):

XKLp
ðqÞ ¼ πqðβij∂j log ðq=pÞ∂iÞ: (43)

This form exactly matches the rest part of their reformulation of a general

MCMC dynamics equation (10) if (βij(x)) is taken as �Q(x) (Liu et al.,

2019b, Thm. 5).ac

4.4.3.3 fRP structure and fGH flow

To wrap up, if a manifold M is equipped with both structures, it is called a

fiber-Riemannian Poisson (fRP) manifold, and the combination of both

acCommon instances of Q satisfy the differential Jacobi identity, required by a Poisson structure.

Exceptions include SGNHT-related dynamics. Nevertheless, the identity does not seem funda-

mental for this geometric construction (even unnecessary for the conservation of Hamiltonian

along Hamiltonian flow).
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flows Eqs. (40) and (42)) of a function is called the fiber-gradient Hamilto-

nian (fGH) flow. The geometric view of a general MCMC dynamics

targeting p can be then stated as the fGH flow of KLp (Eqs. 41 and 43) on

the Wasserstein space P2ðMÞ of an fRP manifold M (Liu et al., 2019b,

Thm. 5).

To draw more intuitions from this geometric view, the fiber-gradient flow

decreases KLp(�jz) on each fiber and drives each q(�jz) toward p(�jz), while the

Hamiltonian flow keeps the target distribution p(x) ¼ p(y, z) invariant while
makes more exploration in the sample space. The Langevin dynamics (Eqs.

11 and 14) defines a usual Riemannian structure (nondegenerate D, all fibers
¼ M, M0 degenerates) and null Poisson structure (Q ¼ 0). The evolving dis-

tribution is driven to the target distribution p by the gradient flow. On the

other extreme, the Hamiltonian dynamics (Eqs. 19 and 21) defines a null

fiber-Riemannian structure (D ¼ 0, fiber space degenerates, M0 ¼ M) and

a nondegenerate Poisson structure (nondegenerate Q). It allows wilder while
eligible exploration hence appears more efficient than the Langevin dynamics.

Nevertheless it is fragile to gradient noise (Betancourt, 2015; Chen et al.,

2014), as it only guarantees p is a stationary point but lacks a driving force

toward p under perturbation. The SGHMC dynamics (22) interpolates

between the two extremes. Its half-ranked D matrix defines a Riemannian

structure only in each cotangent space of a base manifold B, so the fiber bun-

dle M is the cotangent bundle T*B. The symplectic structure of T*B defines

the Hamiltonian flow, and the fiber-gradient flow stabilizes the process in

each fiber space, where the gradient noise comes.

4.4.3.4 Inspiration for more general ParVI methods

As mentioned in Section 4.3.1, the classical ParVI method, SVGD, can be

seen as a deterministic simulation of the Wasserstein gradient flow of KLp.

Under the general geometric view here, there are now more options. Liu

et al. (2019b) introduced ParVI methods that simulate the SGHMC dynamics

(22). The development is done by reformulating the dynamics as equivalent

deterministic ones using Eq. (9) or Eq. (10),

dx

dt
¼Σ�1r,

dr

dt
¼rx logpðxÞ�Cr�CΣrr logqtðrÞ,

8><
>:

dx

dt
¼Σ�1r +rr logqtðrÞ,

dr

dt
¼rx logpðxÞ�Cr�CΣrr logqtðrÞ�rx logqtðxÞ,

8><
>:

and then leveraging ParVI techniques (including SVGD) to estimate all the

r log qt with corresponding particles. For example, the Blob method (Chen

et al., 2018a) (see Section 4.5.1) leads to the following particle updates:
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ðiÞ
k

K
ði,lÞ
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K

ðj,lÞ
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@

1
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8>>>>>>>>>>>>>>><
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(44)

where K
ði,jÞ
r,k :¼ KrðrðiÞk ,r

ðjÞ
k Þ for a kernel Kr for the momentum r, and similarly for K

ði,jÞ
x,k . The new methods inherit the faster

exploration from the Hamiltonian flow.



4.5 Variants and Techniques Inspired by the Geometric View

4.5.1 Other methods for Wasserstein gradient flow simulation

The key to the deterministic simulation of the Wasserstein gradient flow (36)

is the estimation of the set of vectors U* : U*:,i :¼ r log qðxðiÞÞ using particles

fxðiÞgNi¼1 of q. This is also where a smoothing operation is required as dis-

cussed in Section 4.3.1. Besides the way that SVGD estimates it, other meth-

ods are developed.

Perhaps the most straightforward treatment is the kernel density estimator

qðxÞ � ~qKðx; fxðiÞgiÞ :¼ 1
N

PN
i¼1Kðx, xðiÞÞ, which forms a ParVI method named

gradient flow with smoothed density (GFSD) (Liu et al., 2019a). The corres-

ponding approximation is UGFSD:,i ¼
P

k
r

xðiÞK
ði,kÞP

j
Kði,jÞ , where K(i, j) :¼ K(x(i), x(j)).

It shows less diverse particles than SVGD.

This spirit of smoothing density with kernel can be extended. Noting that

r log q ¼ rð δδqq½ log q�Þ, it only requires smoothing the q in log q for allow-

ing the use of the empirical distribution q̂ðxÞ hence particles. This can be done

by: UBlob :¼ rð δ
δqq½ log ðq � KÞ�Þ ¼ r log ðq � KÞ + rð q

q�K � KÞ, or in terms

of particles, UBlob:,i ¼
P

k
r

xðiÞK
ði,kÞP

j
Kði,jÞ +

P
k

r
xðiÞK

ði,kÞP
j
Kðj,kÞ (Chen et al., 2018a). The

method is called Blob due to its origin in fluid mechanics. Note that it adds

a term to UGFSD, which perhaps explains its more spread particles than GFSD.

A more involved method is proposed by Liu et al. (2019a) under the per-

spective of doing kernel smoothing on vector fields (vs on densities), hence

called gradient flow with smoothed function (GFSF). This is done by noting

that r logq¼�argminU�L2 maxϕ�C∞c ,kϕkL2q¼1ðq½ϕ �U�r �ϕ�Þ2, and smooth-

ing the vector field can be done by replacing L2
q by the RKHS Hm as done

by SVGD: UGFSF :¼�argminU�L2 maxϕ�Hm,kϕkHm¼1ðq½ϕ �U�r �ϕ�Þ2 . The

solution using particles is given by UGFSF ¼ �JK�1, where J:,i :¼
P

jrxðjÞK
ði,jÞ.

An interesting connection to SVGD is that, if denoting P:,i :¼rxðiÞ logpðxðiÞÞ, then
VGFSF ¼ P + JK�1 while VSVGD ¼ PK + J, so VGFSF ¼VSVGDK�1. Another

noticeable connection is to the research direction of gradient estimation for

implicit (meaning no density; only samples) generative models. Particularly,

UGFSF coincides with the result by Li and Turner (2018) developed from another

intuition. Moreover, there are other techniques (e.g., Shi et al., 2018) in the direc-

tion that are worth a trial for ParVI.

Besides simulation using the Wasserstein gradient under a Riemannian

perspective, there are also works that explored gradient-flow simulation in

the metric-space sense. Chen et al. (2018a) leveraged the minimizing move-

ment scheme (Eq. 32) for defining the gradient flow (Ambrosio et al., 2008,

Def. 2.0.2). Due to the definition of the Wasserstein distance equation (31),
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each simulation step amounts to a regularized discrete optimal transport prob-

lem, which is solved approximately and analytically with preset Lagrange

multipliers for both marginal-distribution constraints. For other variants,

Ranganath et al. (2016) solved Eq. (27) over the parameter space of a neural

network model, but this introduces additional optimization cost in each

update. The smoothing effect is implicitly controlled by the Lipschitzness of

the neural network.

4.5.2 Riemannian-manifold support space

4.5.2.1 Riemannian SVGD

Liu and Zhu (2018) made the first attempt to extend SVGD to a Riemannian-

manifold support/particle space ðM,gÞ, called RSVGD. They started with the

Riemannian version of Eq. (26) based on the Riemannian continuity equation

(33) (Liu and Zhu, 2018, Lem. 1):

� d

dt
KLpðqtÞ ¼ qt ½divðpVtÞ=p� ¼ qt ½Vt½ log p� + div Vt�, (45)

where the densities are w.r.t. the Riemannian measure ωg on the manifold

ðM,gÞ (Liu and Zhu, 2018, Thm. 2). To find a vector field Vt maximizing

the decreasing rate by solving Eq. (27), requirements on the optimization

domain X are introduced: the analytic solution should be a valid vector field

on M and is coordinate independent. The requirements appear very natural,

but are not easily satisfied. For example, every valid vector field on an even-

dimensional hypersphere must have a zero point [hairy ball theorem

(Abraham et al., 2012, Thm. 8.5.13)], which cannot be guaranteed by the choice

in SVGD X¼Hm for a particular coordinate system, nor can coordinate inde-

pendency. Liu and Zhu (2018) then chose the spaceX¼fgradφ |φ �Hg, where
H is the RKHS of a kernel K defined onM. It naturally guarantees the require-

ments since the gradient is always a valid and coordinate-independent vector

field. For common kernels (e.g., Gaussian kernel), suchX inherits an inner prod-

uct from H, which makes X a Hilbert space (Liu and Zhu, 2018, Lem. 3) and

leads to the analytic solution:

VRSVGD
t ðx0Þ ¼ gradx0qtðxÞ ðgradxKÞ½ logpðxÞ� +LapxK½ �

¼ gðx0Þi
0j0
∂xj0qtðxÞ gðxÞij∂xi logpLðxÞ + ∂xi gðxÞ

ij
� �

∂xjK + gðxÞij∂xi∂xjK
� �

∂xi0

¼ Gðx0Þ�1rx0qtðxÞ GðxÞ�1r logpLðxÞ + r �GðxÞ�1
� �

rxK +GðxÞ�1 :rxr>
x K

� �
,

(46)

where K is evaluated at (x, x0), and pLðxÞ ¼ pðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
jGðxÞj

p
(Liu and Zhu, 2018,

Thm. 4). This expression can also be estimated using particles since qt only
appears in expectations. When used with the Fisher–Rao metric, RSVGD

achieves faster convergence than SVGD for Bayesian logistic regression.

For applications on manifolds without global coordinate system, e.g., hyper-

spheres, simulation in the embedded space ΞðMÞ � n of the manifold is
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preferred due to the argument in Section 3.3. Liu and Zhu (2018) also derived

such an expression:

VRSVGD;emb
t ðy0Þ ¼Λðy0Þry0qtðyÞ r log pðyÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
jGðyÞj

p� �>
ΛðyÞryK +r2

yK
h

�tr PðyÞ>ðryr>
y KÞPðyÞ

� �
+ ðJðyÞ>rÞ>ðGðyÞ�1JðyÞ>ÞryK

i
,

where PðyÞ � n�ðn�mÞ is a set of orthonormal basis of the orthogonal com-

plement of the embedded tangent space Ξ*ðTxMÞ. Particularly for the hyper-

sphere n�1, this reduces to:

V
RSVGD;sph
t ðy0Þ ¼ In� y0y0>

� �
ry0qtðyÞ r logpðyÞ>ryK +r2

yK�y> ryr>
y K

� �
y

h
�ðy> r logpðyÞ + n�1Þy> ryK

i
:

It achieves a faster convergence and better particle efficiency than embedded-

space MCMC methods introduced in Section 3.3 for the spherical admixture

model (Reisinger et al., 2010).

4.5.2.2 Mirrored SVGD

More recently, Shi et al. (2022) considered an extension of SVGD to leverage

the mirror descent technique (Beck and Teboulle, 2003), which is an approach

in optimization to handle constrained domain and Riemannian geometry.

For minimizing a function f on a possibly constrained Euclidean domain

X � m , the method follows the minimizing movement scheme (Eq. 32),

xk + 1 ¼ argminx�X
1
εdψ ðx, xkÞ+rf ðxkÞ>x, using the so-called Bregman diver-

gence (may not be a distance) dψ(x, xk) :¼ ψ(x) � ψ(xk) �rψ(xk)
>(x � xk)

defined by a strongly convex smooth function ψ . The solution has an expres-

sion xk+1 ¼ rψ*(rψ(xk) � εrf(xk)), where ψ*ðyÞ :¼ supx �Xy
>x�ψðxÞ is the

convex conjugate (Legendre transformation) of ψ , and the strong convexity

indicates (ψ*)* ¼ ψ and that y ¼ rψ(x) is a bijection to the mirrored space

 :¼rψðXÞ with inverse x ¼ rψ*(y). The expression is interpreted as first

mirroring xk to the mirrored space yk ¼ rψ(xk) and conducting gradient descent

there yk+1 ¼ yk � εrf(xk), then mirroring back to the original space xk+1 ¼ rψ*

(yk+1). This explains the name. For an example to handle a constrained opti-

mization domain, consider the simplex Δm :¼fx � ð+Þm |
Pm

i¼1x
i < 1g and

ψðxÞ :¼
Pm

i¼1 x
i logxi + xm+ 1ðxÞ logxm+ 1ðxÞ where xm+1ðxÞ :¼ 1�

Pm
i¼1x

i . The

mirror map is rψðxÞ¼ logðx=xm+1ðxÞÞ elementwise, which leads to an uncon-

strained mirror space rψðΔmÞ¼m.

For developing mirrored SVGD, a helpful insight is that mirror descent can

be seen as a Riemannian gradient descent with G ¼ rr>ψ as the Riemannian

metric, since lim ε!0
1
ε ðxk+1 � xkÞ ¼ �ðrr>ψðxkÞÞ

�1rf ðxkÞ matches Eq. (1).

Particularly, the above simplex example also shows the usage of mirror descent
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for information geometry: the Bregman divergence dψ(x, x
0) recovers the KL

divergence KLðCatð � jxÞ k Catð � jx0ÞÞ if the simplex points x, x0 are treated

as the parameter of a categorical distribution (on m + 1 categories), and the

Riemannian metric rr>ψ(x) recovers the Fisher–Rao metric (Fisher informa-

tion matrix) of Cat(�jx).
Under this insight, mirrored SVGD may be seen as a special case of

RSVGD, but there are more subtleties. The tasks are on Euclidean spaces,

meaning a natural, global coordinate system of the manifold, so vector-field

validity and coordinate-invariance are not concerned. On the other hand, as

shown in the simplex example, Δm is a constrained space so updating particles

there is quite involved. But it is much easier to update particles in the uncon-

strained mirrored space, which exactly guarantees the constraint in the origi-

nal space. So Shi et al. (2022) considered solving a dynamics in the

mirrored space, dyt ¼ Ut(xt) dt, similar to the form of mirror descent in the

mirror space. This is equivalent to formulating the dynamics in the original

space as dxt ¼ (rr>ψ(xt))
�1Ut(xt) dt ¼ G(xt)

�1Ut(xt) dt. Under this formula-

tion, the Riemannian version of KL decreasing rate equation (45)becomesad :

� d

dt
KLpðqtÞ ¼ qt ½S

ψ
p Ut�,

where Sψ
p Ut :¼ U>

t ðrr>ψÞ�1r log p + r � ðrr>ψÞ�1
Ut

� �
¼ U>

t ðrr>ψÞ�1r log ðp=jrr>ψ jÞ+ðrr>ψÞ�1
: ðrU>

t Þ,

is called the mirrored Stein operator, and p is the density under the Lebesgue

measure of X (different from the case in Eq. 45). Using this expression, Shi

et al. (2022) solved Eq. (27) for maximizing the decreasing rate in the RKHS

of a matrix-valued kernel K on X :

UMSVGD
t ðx0Þ :¼ qtðxÞ½S

ψ
pKðx,x0Þ�,

where Sψ
p operates on each row of K(x, x0) as a vector-valued function of x

(Shi et al., 2022, Thm. 3). Similar to mirror descent, dynamics simulation

for mirrored SVGD is done by first mirroring all x particles to y particles

using rψ , updating y particles using UMSVGD, and then mirroring back to x
particles.

The simplest choice of kernel is K(x,x0) ¼ K(x,x0)Im where K is a scalar-

valued kernel on X . But Shi et al. (2022) found with one particle, the

algorithm does not reduce to mirror descent targeting the mode of p(x). They
thus introduced a geometry-aware, position-dependent kernel:

Kψ
t ðx,x0Þ :¼ qtðx00Þ K

1=2
t ðx, x00Þrr>ψðx00ÞK1=2

t ðx00, x0Þ
h i

,

adEq. (18) is used in the last equality.
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where K
1=2
t ðx,x0Þ :¼

P
αλ

1=2
t,α ut,αðxÞut,αðx0Þ is defined under the spectral

expansion/Mercer representation of the scalar-valued kernel, K(x, x0) ¼P
αλt,αut,α(x)ut,α(x0), where each (λt,α, ut,α) solves the eigenvalue problem

qtðx0Þ½Kðx,x0Þutðx0Þ� ¼ λtutðxÞ. It drives to the mode of p(x) thus transits to

MAP estimate when using one particle (Shi et al., 2022, Prop. 5), as desired.

Shi et al. (2022) also used a general Riemannian metric in place of rr>ψ
(and using the geometry-aware kernel) for leveraging information geometry

in general Euclidean/unconstrained inference tasks, which recovers natural

gradient descent using one particle.

4.5.3 Accelerated gradient flow

Inspired by the geometric view of ParVI methods as approximations to the

gradient descent of KLp on the Wasserstein space (see Sections 4.3.1 and

4.5.1), Liu et al. (2019a) developed new ParVI methods corresponding to

accelerated first-order optimization on the Wasserstein space. Acceleration

of gradient descent in the Euclidean space is done by the well-known Nester-

ov’s acceleration method (Nesterov, 1983), and it has been extended to Rie-

mannian manifolds, including Riemannian accelerated gradient (RAG) (Liu

et al., 2017) and Riemannian Nesterov’s method (RNes) Zhang and Sra

(2018). When written for the Wasserstein space P2ðmÞ , these accelerated

methods introduce an auxiliary distribution variable ρ � P2ðmÞ in addition

to the optimized distribution variable q, and the optimization updates are

given by [with slight simplification by Liu et al. (2019a)]:

qk ¼Expρk�1
ðεVk�1Þ,

ρk ¼
Expqk �Γqkρk�1

k�1

k
Exp�1

ρk�1
ðqk�1Þ�

k + α�2

k
εVk�1


 �� �
, ðRAGÞ

Expqk c1Exp
�1
qk Expρk�1

ð1� c2ÞExp�1
ρk�1

ðqk�1Þ+ c2Exp�1
ρk�1

ðqkÞ
� �h in o

, ðRNesÞ

8><
>:

8>>><
>>>:
where Vk :¼ �grad KL(ρk), and α > 3 and c1, c2 > 0 are hyperparameters.

Implementing the algorithms requires estimating the exponential map

Expq(V ), its inverse Exp�1
q ðρÞ, and the parallel transport Γρ

q using particles

{x(i)}i of q and particles {y(j)}j of ρ. Recall from Section 4.3.1 (Ambrosio

et al., 2008, Prop. 8.4.6), since the geodesic defining the exponential map

is obviously tangent to V at q, the Wasserstein-space exponential map

Expq(V ) can be estimated by:

ExpqðVÞ ¼ Exp � ðVð � ÞÞ#½q� ¼ ðid + VÞ#½q�, (47)

where the second Exp is the exponential map of the support space, and the last

equality holds on Euclidean support spaces. This means that {x(i) + V(x(i))}i is

a set of particles of Expq(V). The inverse exponential map Exp�1
q ðρÞ is given

by T ρ
q � id on Euclidean support space m, where T ρ

q is the optimal transport

map from q to ρ (Ambrosio et al., 2008, Thm. 7.2.2; Villani, 2008, Cor. 7.22).

Solving the optimal transport problem directly is costly, but Liu et al. (2019a)
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noticed that Exp�1
q ðρÞ is invoked only for ρ as infinitesimally updated q,

which means the two sets of particles possibly hold the pairwise close

assumption: dðxðiÞ,yðiÞÞ≪ minfmin j 6¼idðxðiÞ, xðjÞÞ, min j 6¼idðyðiÞ, yðjÞÞg. The

optimal transport evaluated at x(i) can then be approximated as y(i) � x(i).
As for the parallel transport, Liu et al. (2019a) leveraged the Schild’s ladder

(Ehlers et al., 1972; Kheyfets et al., 2000) approximation method that only

requires the exponential map and its inverse. The resulting accelerated ParVIs

are named Wasserstein accelerated gradient (WAG) and Wasserstein Nester-

ov’s method (WNes) that update particles as:

x
ðiÞ
k ¼ y

ðiÞ
k�1 + εV y

ðiÞ
k�1

� �
,

y
ðiÞ
k ¼ x

ðiÞ
k +

k�1

k
y
ðiÞ
k�1� x

ðiÞ
k�1

� �
+
k + α�2

k
εV y

ðiÞ
k�1

� �
, ðWAGÞ

c1ðc2�1Þ x
ðiÞ
k � x

ðiÞ
k�1

� �
, ðWNesÞ

8><
>:

8>>>><
>>>>:

where each V (y(i))k is estimated using any existing ParVI techniques

(e.g., SVGD, variants in Section 4.5.1).

Taghvaei and Mehta (2019) considered accelerating ParVI dynamics using

a recent powerful unifying framework for optimization dynamics (Wibisono

et al., 2016). The resulting algorithm is in a similar form of the ParVI coun-

terpart of SGHMC, Eq. (44) introduced in Section 4.4.3. The framework has

also been leveraged to accelerate MCMC dynamics (Ma et al., 2019;

Wibisono, 2018).

Another way to accelerate optimization is Newton’s method, which steers

the gradient with the inverse Hessian matrix of the objective. Detommaso

et al. (2018) developed such generalization under the early version of the

Stein geometry, i.e., taking the vector-valued RKHS Hm as the tangent

space (Liu, 2017). Specifically, the Hessian of KLp at q is defined as a

function of two tangent vectors V, W: Hess KLpðqÞðV,WÞ :¼
lim ε!0

1
ε ðV½KLpðExpqðεWÞÞ��V½KLpðqÞ�Þ, where Expq(εW) ¼ (id + εW)#q is

the exponential map (see Eq. 47), and V½FðqÞ�¼ hVðqÞ, gradPHm FðqÞiHm ¼
hVðqÞ,r δF

δq ðqÞiHm is the action of the tangent vector V on F at q (i.e., the direc-

tional derivative along V; see Section 2.2). Its explicit expression is

Hess KLpðqÞðV,WÞ¼�hqðxÞ½Hq,pðx, � ÞWðxÞ�,Vð � ÞiHm , where Hq,pðx,x0Þ :¼
Kðx,x0Þrr> logpðxÞ+rxr>

x Kðx,x0Þ+rxKðx,x0Þr logqðxÞ>. In the Euclidean

case, the Newtonian descending direction w is � (rr>f )�1rf, or v>(rr>f )
w ¼ �v>rf for all vector v. So the Newtonian descending direction W for

KLp at q is given by: Hess KLp(q)(V, W) ¼ �V [KLp(q)] for all tangent vector

V �Hm. This amounts to solving qðxÞ½Hq,pðx,x0ÞWðxÞ�¼VSVGDðx0Þ ¼
qðxÞ½Kðx,x0Þr logpðxÞ+rxKðx,x0Þ�, which is very costly (Ω(N3d3)).

Detommaso et al. (2018) made a relaxation of the problem as qðxÞ½ ~Hq,pðx,x0Þ�
Wðx0Þ ¼VSVGDðx0Þ, where the interaction of W between particles is decoupled,
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and Hq,p is simplified as ~Hq,pðx,x0Þ :¼ ~NpðxÞKðx,x0Þ + ~NKðx,x0Þ where the

Hessians of logp and K are replaced with their Gauss–Newton approximations,

and the third term is omitted due to the difficulty of estimation by particles.ae

They also consider using a kernel with preconditioning, Kðx,x0Þ :¼
expð�ðx� x0Þ>q½�rr> logp�ðx� x0Þ=ð2mÞÞ for faster convergence. Although
this method also leverages Fisher information (through ~Np ) and the kernel

Hessian rxr>
x K as RSVGD (coordinate-space version (46)) does, the two

methods are different in formulation, and the connection is yet to be studied.

Quasi-Newton methods for ParVI are also considered to reduce the costly

second-order derivative computation. Zhu et al. (2020) leveraged a Rieman-

nian quasi-Newton method (Kasai et al., 2018) that also allows stochastic gra-

dient and variance reduction, and applied it to the Wasserstein space to develop

a quasi-Newton ParVI method. Geometric constructions are implemented using

the techniques by Liu et al. (2019a) introduced in Section 4.5.3. They also lev-

eraged this general approach to develop variance-reduced ParVI methods,

based on Riemannian stochastic variance reduction gradient (Zhang et al.,

2016) and Riemannian stochastic path integrated differential estimator (Zhou

et al., 2019).

4.5.4 Treatment of the kernel

As mentioned in Section 4.3.1, under the perspective of ParVI as KLp minimi-

zation on the Wasserstein space, a smoothing operation is mandatory. The

most popular way for this is using kernels (either using kernel density estima-

tion or using RKHS for a function class; see Section 4.5.1), due to its elegant

theoretical properties and efficient implementation. Nevertheless, it also faces

challenges.

It is well known that kernel methods do not work as well in high dimen-

sions. Zhuo et al. (2018) studied the implication for SVGD, and found the par-

ticles tend to collapse and underestimate the marginal variances as dimension

increases. This is due to the vanishing of the repulsive term (second term in

Eq. 30) which is responsible for diversity. Specifically, for a Gaussian kernel,

a Gaussian target distribution, and a Gaussian or compactly supported particle

distribution, the maximal scale of the repulsion was shown to decrease

inversely sublinearly to dimension. To work around this limitation, they pro-

posed a message-passing SVGD, which leverages the conditional indepen-

dency in the high-dimensional random variable under the target distribution,

and remove the corresponding noninteracting dimension pairs in the kernel.

This breaks down a high-dimensional problem into several low-dimensional

problems, and better performance was seen. A similar method is concurrently

aeA better approximation may be omitting the last two terms together, since they cancel each other

under the expectation with q(x) under mild boundary conditions:
R
qðxÞrxKðx,x0Þr log qðxÞ> dx ¼R

rxKðx,x0ÞrqðxÞ> dx ¼ �
R
rxr>

x Kðx,x0ÞqðxÞ dx.
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developed by Wang et al. (2018) which is called graphical SVGD. Ba et al.

(2019) made some further analysis. They showed that for a Gaussian kernel

and Gaussian target distribution, the marginal variance of SVGD-stationary

particles is proportional to the ratio of the number of particles over dimension,

when both are sufficiently large and the ratio is less than 1. They also empha-

sized the collapse is due to both the randomness of estimating the first term of

Eq. (30) using finite particles, and the deterministic update. They then pro-

posed variants to reduce the randomness and enable stochastic particle resam-

pling, though impractical for real applications. Some other works considered

general approaches to reducing the dimensionality of the kernel to combat

the variance collapse problem. Chen and Ghattas (2020) find a dominating

subspace support of the target Bayesian posterior and run SVGD there.

Gong et al. (2021) introduced a sliced kernelized Stein discrepancy [in a sim-

ilar spirit as the sliced Wasserstein distance (Kolouri et al., 2016, 2019)],

which can be unbiased estimated by a one-dimensional kernel calculation

on a randomly/properly selected direction, which largely reduces the

dimensionality. The resulting ParVI is also shown to outperform SVGD. Liu

et al. (2022) took a step further to make a k-dimensional slice (1 	 k 	 m).
The k-dimensional subspace is defined by an optimization problem, which

is solved by simulating a diffusion process on the space of k-dimensional sub-

spaces, called the Grassmann manifold. The Grassmann manifold can be seen

as the quotient space of the Stiefel manifold (all m � k orthogonal matrices)

over the orthogonal group of order k.
There are works that analyzed the impact of kernels on the approximation

power of SVGD convergent particles. Gorham and Mackey (2017) studied the

discriminative power of kernel Stein discrepancy Ip,K(q) defined in Eq. (39),

which indicates properties of SVGD convergent particles since Ip,K(q) con-
verges to zero along SVGD updates (Korba et al., 2020, Cor. 6). They found

Ip,K(q) detects convergence (i.e., it converges to zero for a q sequence weakly

converges to p) if K is twice continuously differentiable with uniformly

bounded second-order cross derivatives and r log p is Lipschitz with finite

L2
p norm. However for the converse, they found a counterexample that

light-tailed kernelsaf fail to detect nonconvergence to standard Gaussian

for dimension m 
 3. This failure unfortunately applies to common kernels

such as the Gaussian kernel, Mat�ern kernel, compactly supported kernels,

and inverse multiquadric (IMQ) kernel KIMQðx,yÞ :¼ ðc2 + k x� yk22Þ
�β

with β � (1, m/(m � 2)). A choice that guarantees the success of detecting

nonconvergence is an IMQ kernel with β � (0, 1). Liu and Wang (2018) ana-

lyzed the condition for a set of particles to be SVGD convergent, and found

the convergent particles give the exact expectation under p for Stein-operator-

transformed RKHS functions. Implications of this result include that linear

afFormally, this means supfmax fjKðx,yÞj, k rxKðx,yÞk2,jr>
x ryKðx,yÞjg; j k x� yk2 
 rg ¼

o r�1= 1
2
�1

mð Þ
� �

.
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kernels K(x, x0) :¼ x>x0 + c2 lead to convergent particles that exactly estimate

the mean and variance of Gaussian distributions, and that a kernel combining

randomly chosen feature maps of another kernel yields Oð1=
ffiffiffiffi
N

p
Þ -close

convergent particles in terms of kernel Stein discrepancy to p.
Liu et al. (2019a) studied the impact of kernel under a dynamics pers-

pective. Under their view of approximate Wasserstein-gradient-flow simula-

tion (Section 4.3.1), the kernel is introduced for the mandatory smoothing

operation for the intractable gradient r log qðxÞ (see Section 4.5.1 for variants

besides SVGD). Due to the equivalence between smoothing densities and

smoothing functions (Section 4.3.1), they took GFSD (Section 4.5.1) as an

example, which uses kernel density estimation for the particle density,

qðxÞ � ~qKðx; fxðiÞg
N

i¼1Þ :¼ 1
N

PN
i¼1Kðx,xðiÞÞ . What matters of this kernel

smoothing is that the density update from the resulting particle update

matches that from the exact dynamics dx ¼ �r log qðxÞ dt. The updated par-

ticles after a time step ε are fxðiÞ � εr log ~qðxðiÞ; fxðjÞgjÞgi , so the resulting

density update is qt+εðxÞ � ~qðx; fxðiÞ � εr log ~qðxðiÞ; fxðjÞgjÞgiÞ. On the other

hand, the exact dynamics leads to the density update ∂tqt(x) ¼ r2qt(x) from

FPE (6), so qt+εðxÞ � ~qðx; fxðiÞgiÞ + εr2~qðx; fxðiÞgiÞ. The principle then trans-

lates to the requirement ~qðx; fxðiÞ � εr log ~qðxðiÞ; fxðjÞgjÞgiÞ ¼ ~qðx; fxðiÞgiÞ +
εr2~qðx; fxðiÞgiÞ, which can be enforced by minimizing the averaged squared

difference over the particles. In the limit ε ! 0, the objective can be formu-

lated as 1
N

P
l r2~qðxðlÞ; fxðiÞgiÞ +

P
jrxðjÞ ~qðxðlÞ; fxðiÞgiÞ � r log ~qðxðjÞ; fxðiÞgiÞ

h i2
:

Liu et al. (2019a) applied this objective to select the bandwidth parameter σ of

a Gaussian kernel,ag which achieves an attractive well-aligned pattern that

ameliorates particle collapse.

Wang et al. (2019) made a generalization of SVGD that uses a matrix-

valued kernel K(�, �), which is a symmetric matrix-valued function K(x, x0)
¼ K(x0, x)> that is positive-definite everywhere. They solved Eq. (27) for

the optimal vector field in the associated vector-valued RKHS HK of the ker-

nel, which is correspondingly defined as the linear space of vector-valued

functions
P

lKð � , xðlÞÞαðlÞ	 

(every α(l) is a vector; summation over a count-

able index set) with inner product
P

lKð � , xðlÞÞαðlÞ
,
P

l0Kð � , yðl
0ÞÞβðl0Þ

D E
HK

:¼P
l, l0α

ðlÞ>KðxðlÞ, xðl0ÞÞβðl0Þ (c.f. Section 4.1). The corresponding reproducing

property is hf ð � Þ,Kð � , xÞαiHK
¼α>f ðxÞ. The resulting matrix-valued SVGD

vector field is:

VSVGD,K
t ðxÞ :¼ qtðx0Þ½Kðx,x

0Þrx0 log pðx0Þ + rx0 � Kðx,x0Þ�:

agFor optimizing bandwidth σ, they divided the objective by σ2m+4 to make a dimensionless

objective.
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Apparently, K(�, �) ¼ K(�, �)Im recovers the previous vector-valued RKHS

HK ¼ Hm and the SVGD vector field equation (29). The general formulation

includes message-passing/graphical SVGD (Wang et al., 2018; Zhuo et al.,

2018) and mirrored SVGD (Shi et al., 2022) that came afterward. They made

a discussion on the choice of K by using the induced kernel under a geometric

transformation, and proposed a second-order method that is cheaper than

Newton SVGD (Detommaso et al., 2018).

5 Conclusion

In this chapter we have reviewed the geometry consideration in sampling

methods, including MCMC and ParVI methods, which are among the major

tools for Bayesian inference. This is directly required when latent variables

are defined on a manifold to better reflect the data structure/semantics. We

have shown how MCMC and ParVI methods on manifolds are developed

and simulated to solve the inference task of such latent variables. These meth-

ods also enable leveraging information geometry, which endows the latent

space with a metric on the likelihood distribution, and leads to a faster conver-

gence. Particularly for ParVI methods as a formulation of variational infer-

ence, a geometric interpretation as the gradient flow of the KL divergence

on certain abstract distribution manifolds can be coined. This inspires various

analysis and methods of ParVI, and also connects ParVI with MCMC which

benefits one with techniques of the other. Nevertheless, computation involv-

ing non-Euclidean geometry is often more costly. Dynamics simulation in

the coordinate space requires matrix inversion or higher-order derivatives,

and only a few manifolds have a closed-form expression of geodesic and

exponential map in the embedded space. ParVIs need to find a tractable

approximation to the gradient flow, and the currently prevailing kernel

method is not as effective in high dimensions. Further progress addressing

these issues would enable people to enjoy the benefits of these geometric

methods with less cost.

Acknowledgments

This work was supported by the National Key Research and Development Program of China

(2021ZD0110502, 2017YFA0700904), NSFC Projects (Nos. 62061136001, 61621136008,

62106121, U19B2034, U19A2081, U1811461), the major key project of PCL (No.

PCL2021A12), and Tsinghua Guo Qiang Institute, and the High Performance Computing

Center, Tsinghua University.

References

Abraham, R., Marsden, J.E., Ratiu, T., 2012. Manifolds, Tensor Analysis, and Applications.

vol. 75, Springer Science & Business Media, New York.

Amari, S.-I., 1998. Natural gradient works efficiently in learning. Neural Comput. 10 (2),

251–276.

286 Handbook of Statistics

http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0010
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0010
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0015
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0015


Amari, S.-I., 2016. Information Geometry and Its Applications. Springer, Tokyo.

Amari, S.-I., Nagaoka, H., 2007. Methods of Information Geometry. vol. 191, American

Mathematical Soc., Providence, Rhode Island.

Ambrosio, L., Gangbo, W., 2008. Hamiltonian ODEs in the Wasserstein space of probability

measures. Commun. Pure Appl. Math. 61 (1), 18–53.

Ambrosio, L., Gigli, N., Savar�e, G., 2008. Gradient Flows: In Metric Spaces and in the Space of

Probability Measures. Springer Science & Business Media, Berlin.

Arvanitidis, G., Hansen, L.K., Hauberg, S., 2018. Latent space oddity: on the curvature of deep

generative models. In: International Conference on Learning Representations.

Arvanitidis, G., Hauberg, S., Hennig, P., Schober, M., 2019. Fast and robust shortest paths on

manifolds learned from data. In: The 22nd International Conference on Artificial Intelligence

and Statistics, PMLR, pp. 1506–1515.

Ba, J., Erdogdu, M.A., Ghassemi, M., Suzuki, T., Wu, D., Sun, S., Zhang, T., 2019. Towards char-

acterizing the high-dimensional bias of kernel-based particle inference algorithms. In: The

2nd Symposium on Advances in Approximate Bayesian Inference.

Barbour, A.D., 1990. Stein’s method for diffusion approximations. Probab. Theory Relat. Fields

84 (3), 297–322.

Beck, A., Teboulle, M., 2003. Mirror descent and nonlinear projected subgradient methods for

convex optimization. Oper. Res. Lett. 31 (3), 167–175.

Benamou, J.-D., Brenier, Y., 2000. A computational fluid mechanics solution to the Monge-

Kantorovich mass transfer problem. Numer. Math. 84 (3), 375–393.

Betancourt, M., 2015. The fundamental incompatibility of scalable Hamiltonian Monte Carlo and

naive data subsampling. In: Proceedings of the 32nd International Conference on Machine

Learning (ICML 2015), IMLS, Lille, France, pp. 533–540.

Betancourt, M., 2017. A conceptual introduction to Hamiltonian Monte Carlo. arXiv:1701.02434.

Betancourt, M., Byrne, S., Livingstone, S., Girolami, M., et al., 2017. The geometric foundations

of Hamiltonian Monte Carlo. Bernoulli 23 (4A), 2257–2298.

Billingsley, P., 2012. Probability and Measure. John Wiley & Sons, New Jersey, ISBN: 978-1-

118-12237-2.

Blei, D.M., Ng, A.Y., Jordan, M.I., 2003. Latent Dirichlet allocation. J. Mach. Learn. Res. 3,

993–1022.

Brubaker, M.A., Salzmann, M., Urtasun, R., 2012. A family of MCMC methods on implicitly

defined manifolds. In: Proceedings of the 15th International Conference on Artificial Intelli-

gence and Statistics (AISTATS-12), AISTATS Committee, La Palma, Canary Islands, pp.

161–172.

Byrne, S., Girolami, M., 2013. Geodesic Monte Carlo on embedded manifolds. Scand. J. Stat.

40 (4), 825–845.

Caterini, A.L., Doucet, A., Sejdinovic, D., 2018. Hamiltonian variational auto-encoder. In:

Advances in Neural Information Processing Systems, vol. 31.

Chen, P., Ghattas, O., 2020. Projected Stein variational gradient descent. Adv. Neural Inf. Proces.

Syst. 33, 1947–1958.

Chen, Y., Li, W., 2018. Natural gradient in Wasserstein statistical manifold.

arXiv:1805.08380.

Chen, T., Fox, E., Guestrin, C., 2014. Stochastic gradient Hamiltonian Monte Carlo. In: Proceed-

ings of the 31st International Conference on Machine Learning (ICML 2014), IMLS, Beijing,

China, pp. 1683–1691.

Chen, C., Ding, N., Carin, L., 2015. On the convergence of stochastic gradient MCMC algorithms

with high-order integrators. In: Advances in Neural Information Processing Systems, NIPS

Foundation, Montr�eal, Canada, pp. 2269–2277.

Geometry in sampling methods Chapter 10 287

http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0020
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0025
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0025
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0030
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0030
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0035
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0035
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0035
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0040
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0040
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0045
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0045
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0045
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0050
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0050
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0050
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0055
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0055
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0060
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0060
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0065
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0065
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0070
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0070
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0070
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0075
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0080
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0080
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0085
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0085
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0090
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0090
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0095
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0095
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0095
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0095
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0100
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0100
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0105
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0105
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0110
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0110
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0115
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0115
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0120
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0120
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0120
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0125
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0125
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0125
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0125


Chen, C., Zhang, R., Wang, W., Li, B., Chen, L., 2018a. A unified particle-optimization frame-

work for scalable Bayesian sampling. In: Proceedings of the Conference on Uncertainty in

Artificial Intelligence (UAI 2018), Association for Uncertainty in Artificial Intelligence,

Monterey, California USA.

Chen, N., Klushyn, A., Kurle, R., Jiang, X., Bayer, J., Smagt, P., 2018b. Metrics for deep genera-

tive models. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp.

1540–1550.

Cheng, X., Bartlett, P., 2017. Convergence of Langevin MCMC in KL-divergence.

arXiv:1705.09048.

Cheng, X., Chatterji, N.S., Bartlett, P.L., Jordan, M.I., 2018. Underdamped Langevin MCMC: a

non-asymptotic analysis. In: Conference on Learning Theory, PMLR, pp. 300–323.

Chewi, S., Le Gouic, T., Lu, C., Maunu, T., Rigollet, P., 2020. SVGD as a kernelized Wasserstein

gradient flow of the chi-squared divergence. In: Advances in Neural Information Processing

Systems, vol. 33, pp. 2098–2109.

Chwialkowski, K., Strathmann, H., Gretton, A., 2016. A kernel test of goodness of fit. In: Pro-

ceedings of the 33rd International Conference on Machine Learning (ICML 2016), IMLS,

New York, New York USA, pp. 2606–2615.

Da Silva, A.C., 2001. Lectures on Symplectic Geometry. vol. 3575 Springer, Boston.

Dalalyan, A.S., 2017. Theoretical guarantees for approximate sampling from smooth and

log-concave densities. J. R. Stat. Soc. B (Stat. Methodol.) 79 (3), 651–676.

Davidson, T.R., Falorsi, L., De Cao, N., Kipf, T., Tomczak, J.M., 2018. Hyperspherical

variational auto-encoders. arXiv:1804.00891.

Detommaso, G., Cui, T., Marzouk, Y., Spantini, A., Scheichl, R., 2018. A Stein variational

Newton method. In: Advances in Neural Information Processing Systems, NIPS Foundation,

Montr�eal, Canada, pp. 9187–9197.

Ding, N., Fang, Y., Babbush, R., Chen, C., Skeel, R.D., Neven, H., 2014. Bayesian sampling

using stochastic gradient thermostats. In: Advances in Neural Information Processing Sys-

tems, NIPS Foundation, Montr�eal, Canada, pp. 3203–3211.

Dinh, L., Sohl-Dickstein, J., Bengio, S., 2017. Density estimation using real NVP. In: Proceedings

of the International Conference on Learning Representations (ICLR 2017).

Do Carmo, M.P., 1992. Riemannian Geometry. Birkh€auser, Boston.

Dockhorn, T., Vahdat, A., Kreis, K., 2021. Score-based generative modeling with critically-

damped Langevin diffusion. In: Proceedings of the International Conference on Learning

Representations (ICLR 2021).

Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D., 1987. Hybrid Monte Carlo. Phys. Lett.

B 195 (2), 216–222.

Duncan, A., N€usken, N., Szpruch, L., 2019. On the geometry of Stein variational gradient descent.

arXiv:1912.00894.

Durmus, A., Moulines, E., 2016. High-dimensional Bayesian inference via the unadjusted Lange-

vin algorithm. arXiv:1605.01559.

Durmus, A., Moulines, E., Saksman, E., 2017. On the convergence of Hamiltonian Monte Carlo.

arXiv:1705.00166.

Eberle, A., Guillin, A., Zimmer, R., 2019. Couplings and quantitative contraction rates for

Langevin dynamics. Ann. Probab. 47 (4), 1982–2010.

Ehlers, J., Pirani, F., Schild, A., 1972. The geometry of free fall and light propagation. In: General

Relativity, Clarendon Press, Oxford, pp. 63–84 (papers in honour of JL Synge).

Erbar, M., et al., 2010. The heat equation on manifolds as a gradient flow in the Wasserstein

space. Ann. Inst. H. Poincar�e Probab. Stat. 46 (1), 1–23.

288 Handbook of Statistics

http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0130
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0130
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0130
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0130
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0135
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0135
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0135
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0140
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0140
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0145
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0145
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0150
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0150
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0150
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0155
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0155
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0155
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0160
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0165
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0165
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0170
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0170
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0175
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0175
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0175
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0175
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0180
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0180
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0180
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0180
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0185
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0185
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0190
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0190
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0195
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0195
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0195
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0200
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0200
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0205
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0205
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0205
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0210
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0210
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0215
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0215
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0220
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0220
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0225
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0225
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0230
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0230
http://refhub.elsevier.com/S0169-7161(22)00042-6/rf0230


Fernandes, R.L., Marcut, I., 2014. Lectures on Poisson Geometry. Springer, Basel.

Gangbo, W., Kim, H.K., Pacini, T., 2010. Differential Forms on Wasserstein Space and

Infinite-Dimensional Hamiltonian Systems. American Mathematical Soc., Providence, Rhode

Island.

Girolami, M., Calderhead, B., 2011. Riemann manifold Langevin and Hamiltonian Monte Carlo

methods. J. R. Stat. Soc. B (Stat. Methodol.) 73 (2), 123–214.

Gong, W., Li, Y., Hernández-Lobato, J.M., 2021. Sliced kernelized Stein discrepancy. In: Pro-

ceedings of the International Conference on Learning Representations (ICLR 2021).

Gorham, J., Mackey, L., 2015. Measuring sample quality with Stein’s method. In: Advances in

Neural Information Processing Systems, NIPS Foundation, Montr�eal, Canada, pp. 226–234.

Gorham, J., Mackey, L., 2017. Measuring sample quality with kernels. arXiv:1703.01717.

Grattarola, D., Livi, L., Alippi, C., 2018. Adversarial autoencoders with constant-curvature latent

manifolds. arXiv:1812.04314.

Hairer, E., Lubich, C., Wanner, G., 2006. Geometric Numerical Integration: Structure-Preserving

Algorithms for Ordinary Differential Equations. vol. 31 Springer Science & Business Media.

He, D., Shi, W., Li, S., Gao, X., Zhang, J., Bian, J., Wang, L., Liu, T.-Y., 2022. Learning physics-

informed neural networks without stacked back-propagation. arXiv:2202.09340.

Hopf, H., Rinow, W., 1931. €Uber den begriff der vollst€andigen differential geometrischen fl€ache.

Comment. Math. Helv. 3 (1), 209–225.

James, I.M., 1976. The Topology of Stiefel Manifolds. vol. 24 Cambridge University Press, New York.

Jordan, R., Kinderlehrer, D., Otto, F., 1998. The variational formulation of the Fokker-Planck

equation. SIAM J. Math. Anal. 29 (1), 1–17.

Kalatzis, D., Eklund, D., Arvanitidis, G., Hauberg, S., 2020. Variational autoencoders with

Riemannian Brownian motion priors. In: International Conference on Machine Learning,

PMLR, pp. 5053–5066.

Kasai, H., Sato, H., Mishra, B., 2018. Riemannian stochastic quasi-Newton algorithm with

variance reduction and its convergence analysis. In: International Conference on Artificial

Intelligence and Statistics, PMLR, pp. 269–278.

Kent, J., 1978. Time-reversible diffusions. Adv. Appl. Probab. 10 (4), 819–835.

Khan, M.E., Nielsen, D., 2018. Fast yet simple natural-gradient descent for variational inference

in complex models. In: 2018 International Symposium on Information Theory and Its Appli-

cations (ISITA), IEEE, Singapore, pp. 31–35.

Kheyfets, A., Miller, W.A., Newton, G.A., 2000. Schild’s ladder parallel transport procedure for

an arbitrary connection. Int. J. Theor. Phys. 39 (12), 2891–2898.

Kingma, D.P., Dhariwal, P., 2018. Glow: generative flow with invertible 1 � 1 convolutions.

In: Advances in Neural Information Processing Systems, vol. 31.

Kolouri, S., Zou, Y., Rohde, G.K., 2016. Sliced Wasserstein kernels for probability distributions.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pp. 5258–5267.

Kolouri, S., Nadjahi, K., Simsekli, U., Badeau, R., Rohde, G., 2019. Generalized sliced

Wasserstein distances. In: Advances in Neural Information Processing Systems, vol. 32.

Korba, A., Salim, A., Arbel, M., Luise, G., Gretton, A., 2020. A non-asymptotic analysis for Stein

variational gradient descent. In: Advances in Neural Information Processing Systems, vol. 33,

pp. 4672–4682.
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